Erklärung HVO 100

Ein Beitrag von

Werner Hoffmann –

HVO wird als ökologisches Wunder von so manchen FDP-Politiker und der Öllobby, Tankstellenlobby und Transport- und Logistiklobby beschrieben.

Tatsache ist, dass es mich verwundert, dass dieses Produkt als Wunder beschrieben wird.

Es gilt als Dieselersatz. Allerdings kann es in der notwendigen Menge, die alleine in Deutschland notwendig wäre, niemals in Deutschland gewonnen werden.

Wenn man die Abfallorodukte aus Pflanzenfett nutzt, wäre nur 1 Prozent dazu vorhanden.

Würde man Pflanzen wie Raps dazu nutzen, wären 26,2 Millionen Hektar dazu notwendig. Das wäre von der Fläche etwa 3,7 Mal die Fläche von Bayern!

Hier nun einmal grundsätzliche Erklärungen über HVO und auch warum HVO ein billiger Marketingtrick der oben genannten Lobby ist und von Lobbyorganisationen momentan billig gehalten wird.

Woraus besteht HVO 100 und von wo kommen diese Grundstoffe derzeit?

Warum ist der Wirkungsgrad ab Rohstoffgewinnung bis zur Km-Effektivität bei knapp 20 %?

HVO100 (Hydrotreated Vegetable Oil) besteht hauptsächlich aus hydrierten Pflanzenölen und tierischen Fetten. Die wichtigsten Grundstoffe für die Herstellung von HVO100 sind:

  1. Pflanzliche Öle: Dazu gehören Rapsöl, Sonnenblumenöl, Palmöl und Sojaöl. Diese Öle werden aufgrund ihrer chemischen Eigenschaften und Verfügbarkeit häufig verwendet.
  2. Tierische Fette: Schlachtabfälle und tierische Fette aus der Lebensmittelproduktion werden ebenfalls genutzt.
  3. Abfall- und Reststoffe: Altspeisefette und gebrauchte Speiseöle, die in Restaurants und in der Lebensmittelverarbeitung anfallen, sind weitere wichtige Quellen, die allerdings maximal 1 Prozent von HVO-Gesamtbedarf abdecken können. oai_citation:1,HVO100: Das Tankstellennetz wächst, doch wie teuer ist die neue Alternative zum Dieselkraftstoff? | trans.info oai_citation:2,HVO100 goes Germany | Der klimaschonende Diesel-Kraftstoff.

Herkunft der Grundstoffe

Derzeit stammen die Rohstoffe für HVO100 aus verschiedenen Quellen und Regionen:

Herstellungsprozess

Im Herstellungsprozess werden die pflanzlichen Öle und tierischen Fette hydriert, d.h., sie werden unter hohem Druck und bei hoher Temperatur mit Wasserstoff behandelt. Dadurch werden die ungesättigten Fettsäuren in gesättigte umgewandelt, was die Stabilität des Öls erhöht und es für die Verwendung als Biokraftstoff geeignet macht.

Der resultierende Kraftstoff ist nahezu frei von Schwefel und anderen Verunreinigungen und kann in herkömmlichen Dieselmotoren ohne Anpassungen verwendet werden oai_citation:5,HVO100: Das Tankstellennetz wächst, doch wie teuer ist die neue Alternative zum Dieselkraftstoff? | trans.info oai_citation:6,Biodiesel HVO100 auch in Deutschland an den Tankstellen – Sonnenseite – Ökologische Kommunikation mit Franz Alt.

Wie hoch ist die notwendige Menge der eingesetzten Energie alleine für den Herstellungsprozess?

Die genaue Menge an Energie, die bei der Herstellung von HVO (Hydrotreated Vegetable Oil) durch den Hydrierungsprozess erforderlich ist, kann variieren und hängt von verschiedenen Faktoren ab, einschließlich der Art der eingesetzten Rohstoffe, der Effizienz der Produktionsanlagen und der spezifischen Verfahrenstechnik. Im Allgemeinen lässt sich jedoch ein grober Überblick geben.

Energieaufwand bei der Hydrierung

  1. Energiebedarf für die Hydrierung:
  • Die Hydrierung ist ein energieintensiver Prozess, der hohen Druck und hohe Temperaturen erfordert.
  • Typische Energieanforderungen können im Bereich von etwa 2-3 Megajoule (MJ) pro Liter produzierten HVO liegen.
  1. Gesamte Prozessenergie:
  • Der gesamte Herstellungsprozess umfasst mehrere Schritte, einschließlich Vorbehandlung der Rohstoffe, Hydrierung, Reinigung und Veredelung.
  • Der gesamte Energieaufwand kann etwa 4-6 MJ pro Liter HVO betragen, wenn man alle Schritte berücksichtigt.

Vergleich zum Energiegehalt des Endprodukts

  1. Energiegehalt von HVO:
  • HVO hat einen Heizwert, der dem von herkömmlichem Diesel sehr ähnlich ist, etwa 35-36 Megajoule pro Liter (MJ/L).
  1. Energieverluste im Vergleich zum Produktnutzen:
  • Wenn man den gesamten Energieaufwand (z.B. 5 MJ/L) mit dem Energiegehalt des Endprodukts (36 MJ/L) vergleicht, ergibt sich ein Energieverlust von etwa 14%.
  • Das bedeutet, dass etwa 14% der Energie, die im fertigen Produkt vorhanden ist, zuvor im Herstellungsprozess aufgewendet werden musste.

Zusammenfassung

  • Herstellung von HVO: Der Energieaufwand für die Herstellung von HVO liegt bei etwa 4-6 MJ pro Liter.
  • Energiegehalt von HVO: Der Heizwert von HVO beträgt etwa 35-36 MJ pro Liter.
  • Energieverlust: Etwa 14% der Energie des Endprodukts muss in den Herstellungsprozess investiert werden.

Diese Zahlen können je nach spezifischen Bedingungen und Technologien leicht variieren. Die Effizienz der Produktionsanlagen und die Optimierung der Prozesse spielen eine wichtige Rolle dabei, wie viel Energie tatsächlich benötigt wird.

Wie hoch sind die Transportkosten im Durchschnitt?

Die Transportkosten von HVO (Hydrotreated Vegetable Oil) können stark variieren, abhängig von mehreren Faktoren wie der Transportdistanz, den genutzten Transportmitteln (Lkw, Schiff, Bahn) und den aktuellen Marktbedingungen (z.B. Treibstoffpreise, Logistikengpässe). Um eine allgemeine Vorstellung zu geben, lassen sich jedoch einige Durchschnittswerte und Faktoren betrachten.

Faktoren, die die Transportkosten beeinflussen

  1. Transportdistanz: Kürzere Distanzen bedeuten in der Regel geringere Kosten.
  2. Transportmittel: Lkw-Transport ist oft teurer als Schiffstransport, aber schneller und flexibler für kürzere Distanzen.
  3. Mengen: Größere Mengen können zu niedrigeren Kosten pro Einheit führen (Skaleneffekte).
  4. Logistik und Infrastruktur: Verfügbarkeit und Zustand der Infrastruktur können die Kosten beeinflussen.

Durchschnittliche Transportkosten

  1. Lkw-Transport:
  • Kosten: Durchschnittlich können die Transportkosten für Flüssigkraftstoffe per Lkw bei etwa 0,10 bis 0,15 Euro pro Liter für mittlere Distanzen (100-200 km) liegen.
  • Beispiel: Für eine Distanz von 150 km könnten die Transportkosten etwa 0,12 Euro pro Liter betragen.
  1. Schiffstransport:
  • Kosten: Schiffstransport ist in der Regel günstiger, besonders für lange Distanzen. Die Kosten könnten im Bereich von 0,05 bis 0,10 Euro pro Liter liegen, abhängig von der Distanz und den Hafengebühren.
  • Beispiel: Für interkontinentale Transporte könnten die Kosten etwa 0,07 Euro pro Liter betragen.
  1. Bahntransport:
  • Kosten: Der Bahntransport liegt kostenmäßig zwischen Lkw und Schiff. Typische Kosten könnten bei etwa 0,08 bis 0,12 Euro pro Liter liegen.
  • Beispiel: Für eine Transportdistanz von 500 km könnten die Kosten etwa 0,10 Euro pro Liter betragen.

Gesamtbetrachtung

Um eine grobe Vorstellung der durchschnittlichen Transportkosten zu geben, nehmen wir einen gemittelten Wert an:

  • Durchschnittliche Transportkosten: Etwa 0,10 Euro pro Liter.

Beispielrechnung

  • Wenn wir eine typische Transportdistanz von 200 km annehmen und die durchschnittlichen Kosten von 0,10 Euro pro Liter verwenden, wären die Transportkosten für HVO:
  • Kosten: 0,10 Euro pro Liter.

Diese Schätzungen können sich je nach spezifischen Umständen ändern. Faktoren wie Marktschwankungen, Ölpreise, regionale Unterschiede und spezifische Verträge können die tatsächlichen Transportkosten beeinflussen.

Angenommen, der Rohstoff von HVO wird im Ausland angebaut…

Im Ausland wird oft auch Palmfett für HVO genutzt.

Was ist Palmöl? Ist Palmöl umweltschädlich?

Palmöl ist ein weit verbreiteter pflanzlicher Rohstoff, der in vielen Lebensmitteln, Kosmetikprodukten und Biokraftstoffen verwendet wird. Trotz seiner vielseitigen Verwendungsmöglichkeiten ist Palmöl auch stark umstritten wegen seiner erheblichen Umweltauswirkungen. Hier sind die Hauptpunkte der Umweltproblematik im Zusammenhang mit Palmöl:

Umweltauswirkungen von Palmöl

  1. Abholzung und Verlust der Biodiversität:
  • Tropische Regenwälder: Die Ausweitung von Palmölplantagen führt zur Abholzung großer Flächen tropischer Regenwälder, insbesondere in Indonesien und Malaysia, die zusammen etwa 85% der weltweiten Palmölproduktion ausmachen.
  • Lebensraumverlust: Diese Abholzung zerstört den Lebensraum zahlreicher gefährdeter Arten wie Orang-Utans, Sumatra-Tiger und Elefanten.
  • Biodiversität: Der Verlust an Biodiversität ist erheblich, da tropische Regenwälder einige der artenreichsten Ökosysteme der Welt sind.

2. Treibhausgasemissionen:

  • CO2-Freisetzung: Die Rodung von Wäldern und die Trockenlegung von Torfböden setzen große Mengen an Kohlendioxid frei, was zur globalen Erwärmung beiträgt.
  • Brandrodung: Häufig wird Brandrodung eingesetzt, um Land für Palmölplantagen vorzubereiten, was zu weiteren Emissionen und Luftverschmutzung führt.

3. Boden- und Wasserqualität:

  • Erosion: Die Abholzung führt zur Bodenerosion, wodurch wertvoller Mutterboden verloren geht.
  • Pestizide und Düngemittel: Der Einsatz von Pestiziden und Düngemitteln auf Palmölplantagen kann zu einer Verschmutzung von Wasserquellen führen, was die Wasserqualität beeinträchtigt und aquatische Ökosysteme schädigt.

4. Soziale Auswirkungen:

  • Landkonflikte: Die Ausweitung von Palmölplantagen führt oft zu Landkonflikten und der Vertreibung lokaler Gemeinschaften und indigener Völker.
  • Arbeitsbedingungen: Die Arbeitsbedingungen auf Palmölplantagen sind häufig schlecht, mit Berichten über Zwangsarbeit und Kinderarbeit.

Nachhaltige Alternativen

– Zertifizierungen:

  • RSPO (Roundtable on Sustainable Palm Oil): Diese Organisation zertifiziert nachhaltiges Palmöl, das unter Berücksichtigung strenger Umwelt- und Sozialstandards produziert wird.
  • ISPO (Indonesian Sustainable Palm Oil) und MSPO (Malaysian Sustainable Palm Oil): Nationale Zertifizierungsprogramme, die ähnliche Ziele verfolgen.
  • – Nachhaltiger Anbau:
  • Agroforstwirtschaft: Integration von Palmölproduktion in bestehende Waldökosysteme, um die Umweltauswirkungen zu minimieren.
  • Schutz von Torfgebieten: Vermeidung der Nutzung von torfreichen Gebieten für Palmölplantagen.

– Alternativen zu Palmöl:

  • Andere pflanzliche Öle: Öle wie Raps, Sonnenblume oder Soja könnten Alternativen bieten, obwohl auch deren Anbau umweltliche Herausforderungen mit sich bringen kann.
  • Mikroalgen: Forschung in der Nutzung von Mikroalgen als nachhaltige Ölquelle könnte eine vielversprechende Zukunftstechnologie sein.

Fazit

Palmölproduktion hat erhebliche negative Umweltauswirkungen, insbesondere in Bezug auf Entwaldung, Verlust der Biodiversität und Treibhausgasemissionen. Nachhaltige Praktiken und Zertifizierungen wie RSPO sind Schritte in die richtige Richtung, um die Umweltauswirkungen zu verringern. Allerdings bleibt die Suche nach wirklich nachhaltigen und umweltfreundlichen Alternativen eine Herausforderung.

——

Angenommen man will den kompletten Verbrauch von Diesel durch HVO und dem Rohstoff Palmöl ersetzen.

Wie viel Fläche und Menge wäre dies?

Um den gesamten Dieselverbrauch in Deutschland durch HVO (Hydrotreated Vegetable Oil) auf Palmölbasis zu ersetzen, müssen wir die Menge des benötigten Palmöls basierend auf dem Dieselverbrauch berechnen.

Gegebene Daten

  1. Dieselverbrauch in Deutschland:
  • 38,3 Milliarden Liter (38,3 Milliarden Liter Diesel pro Jahr).

– Dichte von HVO:

  • Ähnlich wie Diesel, etwa 0,84 kg/L.

– Ausbeute bei der HVO-Produktion:

  • 1 Liter HVO pro Liter Palmöl unter idealen Bedingungen.

Berechnung

– Erforderliche Menge an HVO:

  • Um 38,3 Milliarden Liter Diesel zu ersetzen, benötigen wir 38,3 Milliarden Liter HVO.

– Erforderliche Menge an Palmöl:

  • Da 1 Liter HVO aus etwa 1 Liter Palmöl hergestellt werden kann, benötigen wir:
    [
    38,3 \text{ Milliarden Liter Palmöl}
    ]

Zusammenfassung

Um den gesamten Dieselverbrauch in Deutschland von 38,3 Milliarden Litern pro Jahr durch HVO zu ersetzen, wären 38,3 Milliarden Liter Palmöl erforderlich.

Fläche für Palmölproduktion

Um die Fläche zu berechnen, die notwendig wäre, um diese Menge an Palmöl zu gewinnen:

– Durchschnittlicher Ertrag von Palmölplantagen:

  • Der durchschnittliche Ertrag von Palmölplantagen liegt bei etwa 3,5 bis 4 Tonnen Palmöl pro Hektar pro Jahr. Wir nehmen einen Mittelwert von 3,75 Tonnen pro Hektar pro Jahr.
  • 1 Tonne Palmöl entspricht etwa 1130 Liter Palmöl.
  1. Umrechnung des Ertrags in Liter pro Hektar:
  • Ertrag pro Hektar:
    [
    3,75 \text{ Tonnen} \times 1130 \text{ Liter/Tonne} = 4.237,5 \text{ Liter/Hektar/Jahr}
    ]

– Berechnung der benötigten Fläche:

  • Fläche in Hektar:
    [
    \frac{38,3 \text{ Milliarden Liter}}{4.237,5 \text{ Liter/Hektar}} \approx 9,036,156 \text{ Hektar}
    ]

Vergleich zur Fläche von Bayern

  • Fläche von Bayern: ca. 70.550 Quadratkilometer (7.055.000 Hektar).
  • Benötigte Fläche im Vergleich zu Bayern:
    [
    \frac{9,036,156 \text{ Hektar}}{7,055,000 \text{ Hektar}} \approx 1,28
    ]

Fazit

Um 38,3 Milliarden Liter Diesel pro Jahr durch HVO zu ersetzen, wären etwa 38,3 Milliarden Liter Palmöl erforderlich, wofür eine Fläche von etwa 9,04 Millionen Hektar benötigt würde. Dies entspricht etwa 1,28 Mal der Fläche des Bundeslands Bayern.

Wie wirkt sich die Rodung dieser Fläche, damit Palmen angebaut werden können auf die CO2-Bilanz aus?

Die Umwandlung von Urwäldern in Palmölplantagen hat erhebliche Auswirkungen auf die CO2-Bilanz, da Urwälder große Mengen an Kohlenstoff speichern. Wenn diese Wälder gerodet werden, wird der gespeicherte Kohlenstoff freigesetzt, was zu einem erheblichen Anstieg der CO2-Emissionen führt.

Schritte zur Berechnung

  1. Kohlenstoffspeicherung in Urwäldern:
  • Tropische Regenwälder speichern etwa 150 bis 200 Tonnen Kohlenstoff pro Hektar im oberirdischen Biomassebestand und zusätzlich 100 bis 200 Tonnen Kohlenstoff im Boden.
  • Nehmen wir einen Mittelwert von 175 Tonnen Kohlenstoff pro Hektar in der Biomasse und 150 Tonnen Kohlenstoff pro Hektar im Boden.
  1. Umrechnung in CO2:
  • 1 Tonne Kohlenstoff entspricht etwa 3,67 Tonnen CO2.
  • Gespeicherter Kohlenstoff pro Hektar:
    [
    \text{Biomasse} = 175 \text{ Tonnen Kohlenstoff} \times 3,67 \text{ Tonnen CO2/Tonne Kohlenstoff} = 642,25 \text{ Tonnen CO2}
    ]
    [
    \text{Boden} = 150 \text{ Tonnen Kohlenstoff} \times 3,67 \text{ Tonnen CO2/Tonne Kohlenstoff} = 550,5 \text{ Tonnen CO2}
    ]
  • Gesamtspeicherung pro Hektar:
    [
    642,25 \text{ Tonnen CO2} + 550,5 \text{ Tonnen CO2} = 1.192,75 \text{ Tonnen CO2}
    ]
  1. Berechnung der Gesamtmenge an CO2, die durch die Rodung freigesetzt wird:
  • Erforderliche Fläche für Palmölproduktion: 9.036.156 Hektar.
  • Gesamtemissionen:
    [
    9.036.156 \text{ Hektar} \times 1.192,75 \text{ Tonnen CO2/Hektar} = 10.773.372.579 \text{ Tonnen CO2}
    ]

Auswirkungen auf die CO2-Bilanz

  1. CO2-Emissionen durch Rodung:
  • Die Rodung von 9,04 Millionen Hektar Urwald würde etwa 10,77 Milliarden Tonnen CO2 freisetzen.
  1. CO2-Einsparungen durch HVO:
  • HVO reduziert die CO2-Emissionen im Vergleich zu fossilem Diesel um bis zu 90%.
  • Dieselverbrauch: 38,3 Milliarden Liter.
  • CO2-Emissionen von Diesel: etwa 2,68 kg CO2 pro Liter.
  • Gesamtemissionen durch Diesel:
    [
    38,3 \text{ Milliarden Liter} \times 2,68 \text{ kg CO2/Liter} = 102,64 \text{ Millionen Tonnen CO2}
    ]
  • CO2-Einsparungen durch HVO (90% Reduktion):
    [
    102,64 \text{ Millionen Tonnen CO2} \times 0,9 = 92,38 \text{ Millionen Tonnen CO2/Jahr}
    ]

Langfristige Betrachtung

Wenn man die CO2-Einsparungen durch den Einsatz von HVO über 100 Jahre betrachtet, würde man:
[
92,38 \text{ Millionen Tonnen CO2/Jahr} \times 100 \text{ Jahre} = 9,238 \text{ Milliarden Tonnen CO2}
]

Zusammenfassung

  • Freigesetztes CO2 durch Rodung: 10,77 Milliarden Tonnen CO2.
  • Eingespartes CO2 durch HVO über 100 Jahre: 9,238 Milliarden Tonnen CO2.

Fazit

Die Rodung der benötigten Urwaldfläche würde mehr CO2 freisetzen (10,77 Milliarden Tonnen) als durch die Nutzung von HVO über 100 Jahre eingespart werden könnte (9,238 Milliarden Tonnen). Daher würde die Umwandlung von Urwaldflächen in Palmölplantagen für die HVO-Produktion letztendlich die CO2-Bilanz verschlechtern und nicht verbessern.

———

Kommentar

Ein Gegenargument für HVO erreichte mich heute:

Kalifornien hat bereits über 50% des Diesels durch HVO ersetzt. Wo stehen die Rapsfelder dazu ? Nirgends, weil kein Raps drin ist. Werner Hoffmann möchte Klimaschutz verhindern und anstatt Bestandsflotten sofort zu Defossilieren lieber warten bis in 70 Jahren auch das letzte Auto in Asien und Afrika ein BEV ist.
Hierzu meine Stellungnsahme:
„Kalifornien ist ein kleiner Sonderfall. Zum einen leben knapp 12 Prozent der Einwohner der USA dort und Kalifornien hat die schärfsten Umweltbedingungen.

Meine #Antwort:

Für Kalifornien stimmt dies. Zu jeweils rund 5,7 Mrd. waren es Diesel und 5,7 Mrd. waren es erneuerbarer Sprit.
ALLERDINGS —> Das klappt nur in Kalifornien und NICHT für die gesamte USA und schon garnicht weltweit.
Kalifornien Import einen hohen Anteil. Warum? Ganz einfach

Die notwendige Menge von Z.B. Pflanzenabfall – und Tierfette kann nicht in Kalifornien gewonnen werden.

In Kalifornien sind übrigens die Umweltvorschriften sehr weit fortgeschritten.

Genau deshalb wird dort auch erneuerbare Energie gefordert.

Nur eines ist auch klar:
HVO ist sehr sehr begrenzt und könnte weltweit nur etwa 1 bis 2 Prozent des gesamten Dieselverbrauchs übernehmen.

Alles darüber muss dann durch Palmölfett und Rapsöl etc. geleistet werden.

Und genau hier ist der Haken.

Zwar werden beim HVO-Produkt nur noch 20 Prozent CO2 frei,
aber bei den 98 % Diesel ändert sich nichts.

Wenn diese 98% durch Palmfett ersetzt werden, ist der CO2 Effekt völlig weg, denn dafür müssten riesige Urwälder gerodet werden.
Wir kommen um EMobilität nicht herum!

Wir kommen um EMobilität nicht herum!

HVO – teuer – unwirtschaftlich – und nicht ressourcenschonend! und vor allem: „HVO ist der Keuschheitsgürtel für Dieselkraftstoff!“

Durch FDP müssen über 40 Millionen Fußballfelder für Rapsöl neu entstehen!

Warum der neue „Alternative Dieselkraftstoff“ nicht sinnvoll ist und der fossilen Lobby hilft Dieselkraftstoff weiter zu verkaufen.

Ein Beitrag von

Werner Hoffmann
Demokrat der Mitte

Die FDP hat es durchgesetzt, dass HVO nun genutzt und vertrieben werden kann.

Interessant ist, dass die FDP auch eine Spende – soweit ich gelesen habe 50.000 Euro – bekommen hat.

Auch andere Parteien, wie zum Beispiel CDU, CSU, Freie Wähler in Bayern und AfD würden wohl HVO begrüßen, zumindest ist hier keine Kritik gegen HVO zu hören.

Dies hatte mich aufhören lassen und ich beschäftigte mich deshalb einmal mit dieser Alternative „HVO“.

Natürlich wird HVO aus unterschiedlichen pflanzlichen und tierischen Fetten hergestellt. Aber es macht einmal Sinn, sich die Menge vorzustellen, die notwendig ist und vor allem, wie hoch dadurch dann der Energieaufwand ist.

Pommes Frites-Fett für HVO? Gibt es nicht ausreichend, wird aber bei BioDiesel schon genutzt.

HVO steht für “Hydriertes Pflanzenöl” (auf Englisch: Hydrotreated Vegetable Oil). Es handelt sich dabei um einen biobasierten Dieselkraftstoff, der durch die Hydrierung von Pflanzenölen und tierischen Fetten hergestellt wird.

Der Prozess der Hydrierung entfernt Sauerstoffverbindungen und sättigt die Fettsäuren, wodurch ein qualitativ hochwertiger Dieselkraftstoff entsteht, der fossilem Diesel sehr ähnlich ist und in bestehenden Diesel-Infrastrukturen verwendet werden kann.

Wie wird HVO positiv umschrieben? 

HVO (Hydriertes Pflanzenöl) kann problemlos mit fossilem Diesel gemischt werden. Es gibt mehrere Möglichkeiten, wie HVO verwendet wird:

1. Reiner HVO (HVO100):

  • HVO kann als reiner Kraftstoff (HVO100) verwendet werden, ohne dass er mit fossilem Diesel gemischt wird. Dies erfordert in der Regel keine oder nur minimale Anpassungen an bestehenden Diesel-Fahrzeugen.

2. Mischung mit fossilem Diesel:

  • HVO kann in verschiedenen Anteilen mit fossilem Diesel gemischt werden. Übliche Mischungsverhältnisse sind zum Beispiel:
    • HVO10: 10% HVO, 90% fossiler Diesel
    • HVO20: 20% HVO, 80% fossiler Diesel
    • HVO30: 30% HVO, 70% fossiler Diesel
    • Und so weiter, bis hin zu HVO100.

3. Vorteile der Mischung:

  • Flexibilität: Die Möglichkeit, HVO in verschiedenen Mischungsverhältnissen zu verwenden, bietet Flexibilität für verschiedene Anwendungen und Anforderungen.
  • Reduzierte Treibhausgasemissionen: Durch die Beimischung von HVO zu fossilem Diesel können die Treibhausgasemissionen im Vergleich zu rein fossilem Diesel signifikant reduziert werden.
  • Verbesserte Kraftstoffqualität: HVO hat bessere Verbrennungseigenschaften und kann die Leistung und Lebensdauer von Dieselmotoren verbessern.

4. Kompatibilität:

  • HVO ist vollständig kompatibel mit der bestehenden Infrastruktur für fossilen Diesel, einschließlich Tankstellen, Lagereinrichtungen und Fahrzeugen. Dies erleichtert die Umstellung und Integration von HVO in den bestehenden Markt.
  • Moderne Dieselmotoren sind in der Regel ohne Anpassungen in der Lage, HVO in verschiedenen Mischungsverhältnissen zu nutzen. Bei älteren Fahrzeugen kann es jedoch sinnvoll sein, die Herstellervorgaben zu prüfen.

5. Regulatorische Aspekte:

  • In vielen Ländern wird die Beimischung von biogenen Kraftstoffen wie HVO zu fossilem Diesel durch gesetzliche Vorgaben und Anreize gefördert, um die Reduzierung von Treibhausgasemissionen und die Erhöhung des Anteils erneuerbarer Energien im Transportsektor zu unterstützen.
  • Zusammenfassend bietet HVO als reiner Kraftstoff oder in Mischungen mit fossilem Diesel eine flexible und effektive Möglichkeit, die Umweltauswirkungen des Verkehrssektors zu reduzieren, ohne umfangreiche Änderungen an der bestehenden Infrastruktur vornehmen zu müssen.

Wie viel Dieselkraftstoff wird in Deutschland jährlich verbraucht?

Im Jahr 2023 betrug der Verbrauch von Dieselkraftstoff in Deutschland etwa 33,7 Millionen Tonnen. Dies umfasst sowohl den Verbrauch im Straßenverkehr als auch den Einsatz in der Landwirtschaft, im Bauwesen und anderen Industriebereichen. Der Verbrauch kann von Jahr zu Jahr variieren, abhängig von Faktoren wie Wirtschaftswachstum, Effizienzsteigerungen und politischen Maßnahmen zur Förderung alternativer Antriebsformen und Kraftstoffe.

HVO- Gewinnung anhand des Beispiels Rapsöl

Für die Produktion von 1 Liter Rapsöl wird ungefähr eine Fläche von etwa 7,14 Quadratmetern benötigt.

Wie groß müsste die Fläche sein, damit der gesamte Dieselbedarf durch Rapsöl ersetzt wird?

Annahmen:1. Dichte von Diesel und HVO: Etwa 0,84 kg/L 2. Ausbeute: 1 Liter Rapsöl ≈ 1 Liter HVO

Schritt 1: Umrechnung von Tonnen in Liter• 33,7 Millionen Tonnen HVO * 1.000.000 kg/Millionen Tonnen = 33,700,000,000 kg HVO • 33,700,000,000 kg / 0,84 kg/L = 40,119,047,619 Liter HVO

Allerdings produziert Deutschland nur etwa 117,3 Millionen Liter gebrauchtes Speiseöl pro Jahr oai_citation:3,WtERT | Waste to Energy Research Technology oai_citation:4,Used Cooking Oil – European Biomass Industry Association. Diese Menge an gebrauchtem Speiseöl ist bei weitem nicht ausreichend, um den gesamten Dieselbedarf zu decken, da sie weniger als 1% des jährlichen Dieselverbrauchs ausmacht.

Schritt 2: Berechnung des benötigten Rapsöls• Da die Ausbeute 1:1 ist, benötigen wir für 40,119,047,619 Liter HVO etwa die gleiche Menge an Rapsöl. • Somit werden etwa 40,119,047,619 Liter Rapsöl benötigt.

Zusammengefasst:

Für die Produktion von 33,7 Millionen Tonnen HVO werden etwa 40,119,047,619 Liter Rapsöl benötigt.

Wie groß muss die Fläche sein, um diese Menge zu gewinnen?

Um die Fläche zu berechnen, die benötigt wird, um 40,119,047,619 Liter Rapsöl zu produzieren, nutzen wir die vorherige Schätzung, dass etwa 7,14 Quadratmeter Fläche benötigt werden, um 1 Liter Rapsöl zu gewinnen.

Berechnung:1. Benötigte Rapsölmenge: 40,119,047,619 Liter 2. Flächenbedarf pro Liter Rapsöl: 7,14 Quadratmeter

Schritt 1: Gesamtfläche berechnen• 40,119,047,619 Liter * 7,14 Quadratmeter/Liter = 286,449,838,726.66 Quadratmeter

Schritt 2: Umrechnung in Hektar• 286,449,838,726.66 Quadratmeter / 10,000 Quadratmeter pro Hektar = 28,644,983.87 Hektar

Zusammengefasst:

Um etwa 40,119,047,619 Liter Rapsöl zu produzieren, würde man etwa 28,644,983.87 Hektar Anbaufläche für Raps benötigen.

Wie viele Fußballfelder wären dies?

Schritt 1: Umrechnungsfaktor

1 Fußballfeld ≈ 7.140 Quadratmeter

Schritt 2: Gesamtfläche in Quadratmetern• 286,449,838,726.66 Quadratmeter

Schritt 3: Umrechnung in Fußballfelder

• 286,449,838,726.66 Quadratmeter / 7.140 Quadratmeter/Fußballfeld ≈ 40,134,914 Fußballfelder

Um die benötigte Fläche in Fußballfelder umzurechnen, verwenden wir die Standardgröße eines Fußballfeldes. Ein Fußballfeld hat typischerweise eine Fläche von etwa 7.140 Quadratmetern (70-75 Meter breit und 100-110 Meter lang).

Um die benötigte Menge an Rapsöl für die Herstellung von 33,7 Millionen Tonnen HVO zu produzieren, wären etwa 40.134.914 Fußballfelder an Rapsanbaufläche erforderlich.

Wenn es diese zusätzliche Fläche wirklich geben würde, dann wären die nächsten Fragen:

1. Wie viele Arbeitnehmer und Maschinen wären dafür notwendig?

2. Wie viel Energie müsste eingesetzt werden, um diese Ernte einzufahren?

Die Mähdrescher würden für die Ernte von Raps auf einer Fläche von 28,560,000 Hektar etwa 571,200,000 Liter Diesel benötigen.

3. Auswirkung auf Tierwelt, Boden und Grundwasser

So stellt sich hier schon die Frage, woher die ganzen Bienen kommen sollen, die 40 Millionen Fußballfelder bestäuben sollen.

Wie viele Mähdrescher wären durchschnittlich für 40 Millionen Rapsöl für die Ernte notwendig?

Annahmen:1. Erntefläche: 40 Millionen Fußballfelder 2. Größe eines Fußballfeldes: 7.140 Quadratmeter 3. Gesamtfläche: 40 Millionen * 7.140 Quadratmeter = 285,600 Quadratkilometer 4. Erntekapazität pro Mähdrescher: • Ein moderner Mähdrescher kann etwa 5 Hektar (50.000 Quadratmeter) pro Tag ernten. 5. Verfügbare Erntezeit: • Angenommen, die Erntezeit beträgt etwa 30 Tage.

Schritt 1: Gesamtfläche in Hektar:• 285,600 Quadratkilometer * 100 Hektar/Quadratkilometer = 28,560,000 Hektar

Schritt 2: Berechnung der benötigten Mähdrescher pro Tag:• 28,560,000 Hektar / 30 Tage = 952,000 Hektar pro Tag

Schritt 3: Berechnung der Anzahl der Mähdrescher:• 952,000 Hektar pro Tag / 5 Hektar pro Tag pro Mähdrescher = 190,400 Mähdrescher

Zusammengefasst:

Um eine Fläche von etwa 40 Millionen Fußballfeldern (entspricht 28,560,000 Hektar) innerhalb eines Erntezeitraums von 30 Tagen zu ernten, wären etwa 190,400 Mähdrescher erforderlich.

Für die Ernte von Rapsöl wird natürlich auch Personal benötigt. Aber auch Rapsöl oder ein Diesel Kraftstoff müssen für die Mähdrescher eingesetzt werden.

Ich habe jetzt einfach mal mir die Frage gestellt. Wie viel Liter Diesel würden alle diese Mähdrescher benötigen?

Um den Dieselverbrauch der Mähdrescher für die Ernte von Raps auf einer Fläche von 28,560,000 Hektar (entspricht 40 Millionen Fußballfeldern) zu berechnen, müssen wir den durchschnittlichen Dieselverbrauch pro Hektar eines Mähdreschers kennen. Ein typischer moderner Mähdrescher verbraucht etwa 20 Liter Diesel pro Hektar.

Schritt 1: Dieselverbrauch pro Hektar• Durchschnittlicher Dieselverbrauch: 20 Liter pro Hektar

Schritt 2: Gesamtfläche• Gesamtfläche: 28,560,000 Hektar

Schritt 3: Gesamter Dieselverbrauch• Gesamter Dieselverbrauch = Gesamtfläche * Dieselverbrauch pro Hektar • 28,560,000 Hektar * 20 Liter/Hektar = 571,200,000 Liter Diesel

Zusammengefasst:

Die Mähdrescher würden für die Ernte von Raps auf einer Fläche von 28,560,000 Hektar etwa 571,200,000 Liter Diesel benötigen.

Lohnt das denn wirklich?

Tatsächlich steckt meines Erachtens ein ganz anderer Gedanke dahinter. Zum einen will man die fossile Lobby und zum anderen die Öl Logistik und Lobby der Verbrennungsmotoren damit unterstützen.

Fakt ist ja, dass Diesel-Kraftstoff genauso wie auch HVO bei einem Verbrennungsmotor gerade einmal einen Wirkungsgrad von etwa 40 % erzeugt.

Dabei muss man berücksichtigen, dass im Vorfeld extrem viel Energie aufgewendet werden musste, für die Gewinnung von HVO. Dazu zählt nicht, nur der Anbau und Abbau von den entsprechenden Pflanzenrohstoffen, sondern auch die Logistikkosten und die Verarbeitung von HVO.

Geht man im besten Fall davon aus, dass von 100 % des Rohstoffs (also vor der Anpflanzung) Für die Anpflanzung, Pflege, Abbau, Transport und Verarbeitung etwa 60 % Energie notwendig sind, dann würden 40 Prozent im Diesel-Autotank ankommen.

Wenn dann der Wirkungsgrad bei 40 Prozent liegt, dann es der echte Wirkungsgrad gerade einmal bei 16 Prozent!

Klare Aussage HVO lohnt sich nicht und wird niemals Diesel ersetzen, sondern bestenfalls den Dieselsprit beigemischt.

Welcher perfide Plan steckt dahinter?

Bin HVO aufgrund der fehlenden Menge nur in Diesel beigemischt wird, dann wird Diesel weiter benötigt werden und eingesetzt. Diesel würde also so nie verschwinden, sondern überwiegend trotzdem notwendig sein. Die Konsequenz daraus ist, dass wir keine Energiewende beim Sprit haben würden.

Gerade aus diesem Grunde ist es notwendig, dass HVO nicht weiter betrieben wird.

HVO ist der Keuschheitsgürtel für Dieselkraftstoff!

Letztendlich wird HVO zum einen durch die fossile Lobby, die Automobilzulieferer, aber auch durch die Finanzinvestorlobby (beispielsweise #BlackRock) gestützt.

Grund für Investmentlobby: „An der fossilen Energie ist Cash auch in der gesamten Liegerkette verdient, insbesondere auch am Abbau und der Logistik des Rohstoffes. Bei Sonne, Wind fehlt der cashgewinn. Und bei Wasser verdient diese Branche weniger.

——- Ergänzung:

Aber wir haben doch so viel Pommes Frites fett in Deutschland, dass dadurch ja ganz viel Diesel gewonnen werden könnte. Oder ist das falsch?

Wie viel Pommes Frites Fett entsteht pro Jahr in Deutschland?

In Deutschland wird geschätzt, dass pro Person etwa 1,3 Kilogramm gebrauchtes Speiseöl (UCO) pro Jahr gesammelt werden kann. Bei einer Bevölkerung von rund 83 Millionen Menschen ergibt dies etwa 107.900 Tonnen gebrauchtes Speiseöl pro Jahr oai_citation:1,WtERT | Waste to Energy Research Technology oai_citation:2,Used Cooking Oil – European Biomass Industry Association.

Für die Umwandlung in HVO (Hydriertes Pflanzenöl) könnte dieses gebrauchte Speiseöl genutzt werden. Da die Ausbeute bei der Umwandlung von gebrauchtem Speiseöl zu HVO typischerweise bei etwa 1:1 liegt, könnten somit ungefähr 107.900 Tonnen HVO pro Jahr produziert werden.

Diese Menge ist jedoch im Vergleich zum gesamten Dieselverbrauch in Deutschland, der bei etwa 33,7 Millionen Tonnen pro Jahr liegt, relativ gering. Es zeigt, dass gebrauchtes Speiseöl nur einen kleinen Teil des gesamten Bedarfs decken kann und somit keine vollständige Lösung für den Ersatz von fossilem Diesel darstellt.

Wie viel Liter Pommes Frites Fett sind das?

Um die Menge an gebrauchtem Pommes Frites-Fett in Litern zu berechnen, die jährlich in Deutschland anfällt, verwenden wir die folgenden Daten:

  • 1,3 Kilogramm pro Person pro Jahr an gebrauchtem Speiseöl.
  • 83 Millionen Menschen in Deutschland.
  • Die Dichte von Speiseöl beträgt ungefähr 0,92 Kilogramm pro Liter.

Rechnen wir das um:

  1. Gesamtmenge in Kilogramm:
    ( 1,3 \text{ kg/Person} \times 83 \text{ Millionen Personen} = 107,900,000 \text{ kg} )
  2. Umrechnung in Liter:
    ( \frac{107,900,000 \text{ kg}}{0,92 \text{ kg/Liter}} \approx 117,282,609 \text{ Liter} )

Daher werden in Deutschland jährlich etwa 117,3 Millionen Liter gebrauchtes Speiseöl, einschließlich Pommes Frites-Fett, produziert.

Und wie viel Liter Diesel werden jedes Jahr in Deutschland verbraucht?

In Deutschland wird jährlich etwa 33,7 Millionen Tonnen Diesel verbraucht oai_citation:1,Germany’s energy consumption and power mix in charts | Clean Energy Wire oai_citation:2,Energy consumption in Germany is estimated to dip by 8% in 2023 | Enerdata.

Dies entspricht ungefähr 40 Milliarden Litern Diesel.

Um diese Menge an Diesel mit gebrauchtem Pommes Frites-Fett (UCO) zu ersetzen, bräuchte man etwa die gleiche Menge in Litern, da das Umwandlungsverhältnis von UCO zu HVO (Hydriertes Pflanzenöl) ungefähr 1:1 ist.

Allerdings produziert Deutschland nur etwa 117,3 Millionen Liter gebrauchtes Speiseöl pro Jahr oai_citation:3,WtERT | Waste to Energy Research Technology oai_citation:4,Used Cooking Oil – European Biomass Industry Association.

Diese Menge an gebrauchtem Speiseöl ist bei weitem nicht ausreichend, um den gesamten Dieselbedarf zu decken, da sie weniger als 1% des jährlichen Dieselverbrauchs ausmacht.

Wenn nun 1 % HVO maximal durch das Speiseöl 1 Prozent gewonnen werden kann, dann benötigen wir immer noch 99 % aus Raps……

Es ist leicht zu erkennen, dass diese Rechnung überhaupt nicht aufgehen kann.

Es ist ein Fiasko, was die FDP hier anrichtet, indem sie sich Sponsoren lässt und die Mineralölindustrie damit einen freie Brief für weitere Dieselnutzung erhält.

——-

Erweiterung um einen Kommentar:

Ein Gegenargument für HVO erreichte mich heute:

Kalifornien hat bereits über 50% des Diesels durch HVO ersetzt. Wo stehen die Rapsfelder dazu ? Nirgends, weil kein Raps drin ist. Werner Hoffmann möchte Klimaschutz verhindern und anstatt Bestandsflotten sofort zu Defossilieren lieber warten bis in 70 Jahren auch das letzte Auto in Asien und Afrika ein BEV ist.
Hierzu meine Stellungnsahme:
„Kalifornien ist ein kleiner Sonderfall. Zum einen leben knapp 12 Prozent der Einwohner der USA dort und Kalifornien hat die schärfsten Umweltbedingungen.

Meine #Antwort:

Für Kalifornien stimmt dies. Zu jeweils rund 5,7 Mrd. waren es Diesel und 5,7 Mrd. waren es erneuerbarer Sprit.
ALLERDINGS —> Das klappt nur in Kalifornien und NICHT für die gesamte USA und schon garnicht weltweit.
Kalifornien Import einen hohen Anteil. Warum? Ganz einfach

Die notwendige Menge von Z.B. Pflanzenabfall – und Tierfette kann nicht in Kalifornien gewonnen werden.

In Kalifornien sind übrigens die Umweltvorschriften sehr weit fortgeschritten.

Genau deshalb wird dort auch erneuerbare Energie gefordert.

Nur eines ist auch klar:
HVO ist sehr sehr begrenzt und könnte weltweit nur etwa 1 bis 2 Prozent des gesamten Dieselverbrauchs übernehmen.

Alles darüber muss dann durch Palmölfett und Rapsöl etc. geleistet werden.

Und genau hier ist der Haken.

Zwar werden beim HVO-Produkt nur noch 20 Prozent CO2 frei,
aber bei den 98 % Diesel ändert sich nichts.

Wenn diese 98% durch Palmfett ersetzt werden, ist der CO2 Effekt völlig weg, denn dafür müssten riesige Urwälder gerodet werden.
Wir kommen um EMobilität nicht herum!

Merz – Falschaussage zur Mobilität.

Ein Beitrag von Peter

Peter Jelinek

CDU-Chef Friedrich Merz sagte vor Kurzem: Man wisse nicht, welche Mobilität in Zukunft „wirklich umweltneutral“ entwickelt werden könne, hier eine ganz einfache Einordnung.

Hintergrund seiner Aussage war der Start der Kampagne gegen das europäische Verbrenner-Aus 2035. Mal abgesehen davon, dass der Markt die Richtung in die E-Mobilität klar vorgibt, geht es vor allem um Energieeffizienz, die er außen vorlässt. Denn die Frage bei jedem Antrieb ist: Woher kommt der Strom, der die die E-Fuels oder den Wasserstoff erzeugt?

—> Zu E-Fuels:
„E-Fuels sind wahrscheinlich noch lange knapp. Selbst wenn der Markthochlauf so schnell passiert wie beim Wachstumschampion Solar-Photovoltaik, würde das globale Angebot in 2035 nicht einmal ausreichen um die unverzichtbaren deutschen Bedarfe für Luftverkehr, Schifffahrt und Chemie zu decken“, heißt es aus vom PIK – Potsdam Institute for Climate Impact Research.

E-Fuels sind heute noch nicht kommerziell verfügbar. Bisher gibt es weltweit nur sehr wenige Demonstrationsanlagen. Bis 2035 sind derzeit etwa 60 neue E-Fuel-Projekte angekündigt, von denen nur etwa 1 Prozent mit einer finalen Investitionsentscheidung gesichert sind (Stand Ende 2023). Alle diese weltweiten Projekte entsprächen zusammen nur etwa 10 % der unverzichtbaren E-Fuel-Bedarfe Deutschlands. Die Politik hat mit verpflichtenden Quoten für E-Fuels im Flug- und Schiffsverkehr eine Stellschraube, um den E-Fuel-Markthochlauf zu beschleunigen.

—> Zu Wasserstoff
Toyota verschenkt im Grunde derzeit seine Wasserstoffautos, weil es sie nicht los wird. Das Unternehmen fährt also massive Verluste damit ein. Vor Kurzem hieß es: „In Deutschland werden in Kürze eine Reihe von öffentlichen Wasserstofftankstellen geschlossen. In Koblenz wird zum 1. April sogar die einzige öffentliche H2-Tankstelle für Wasserstoffautos im gesamten Bundesland dicht gemacht – offenbar, weil sich der Betrieb nicht lohnt.“

Weltweit sieht es auch nicht anders aus: Im Februar hatte Shell angekündigt, seine Wasserstoff-Tankstellen in Kalifornien zu schließen – die Standorte in Großbritannien hatte der Energiekonzern bereits 2022 geschlossen.

Der Knackpunk ist: Für Lkws oder andere Nutzfahrzeuge spielt Wasserstoff tatsächlich eine Rolle, aber eben nicht fürs Auto. Claudia Kemfert nannte den Wasserstoff einmal „Champagner der Energiewende“, den man nicht ins Auto kippen solle. Angesichts des hohen Energiebedarfs, den es für die Herstellung und Transport braucht, fasst es das gut zusammen. Wir brauchen Wasserstoff, aber eben in den Stahlwerken oder gern in Lkws – wobei letzteres sich auch noch zeigen wird.

Und um den Abschluss mit dem „Autopapst“ Prof. Dr. Ferdinand Dudenhöffer zu machen: „Anstatt unsere Autobauer zu retten, zerstört das Gerede über eine Abkehr vom Verbrenner-Aus unsere Industrie. (…) Wer sagt, er wolle das Verbrenner-Verbot kippen, schadet dem Standort.“

———

Ein Kommentar von

Werner Hoffmann
– Demokrat der Mitte-

Was wollen Politiker wie Merz und Lindner erreichen, wenn sie von Technologieoffenheit reden.

Unstrittig ist, dass damit diese Politiker und aus meiner Sicht Lobbyisten der fossilen Energie damit zunächst den Abbruch von fossiler Energie verhindern oder zumindest weiter nach hinten schieben wollen.

Technologieoffenheit bedeutet immer ein hinausschieben des Energiewechsels. Letztendlich werden alleine durch die Ölförderung weltweit jeden Tag 1 Mrd. US-Dollar verdient! Nein, nicht Umsatz, sondern Gewinn!

Und dieser Gewinn ist noch lange nicht alles! Neben den Ölförderfirmen verdienen auch noch ganz andere Wirtschaftszweige daran mit:

  • Ölrafinerie
  • Transport
  • Tankstellennetze
  • Hardwarehersteller aus den Branchen
  • Finanzdienstleister
  • Vermögensverwalter
  • etc.

Je länger die Umstellung auf erneuerbare Energie abgeschwächt wird, desto länger dauert diese Transformation.

Und mit Technologieoffenheit wird letztendlich durch das Prinzip Hoffnung weiter Cash verdient!

Aber nicht nur das. Es wird Geld in den Sand gesetzt. Selbst wenn man mit Strom alles abdecken könnte, würde man trotzdem die Technologieoffenheit fordern, denn es geht dabei auch um Forschungsgelder und den Erhalt des Tankstellennetzes (Tankstellenlobby).

Kein Anspruch auf Verschleierung im Straßenverkehr – Es herrscht auch dort Verhüllungsverbot

Ein Beitrag von

Werner Hoffmann
Demokrat der Mitte

Dass es ein Vermummungsverbot im Straßenverkehr geben darf, wurde jetzt in einem Verbots-Sehschlitzurteil nochmals deutlich:

Kein Anspruch auf Ausnahmegenehmigung für Niqab am Steuer

Urteil: Oberverwaltungsgericht Münster, Urteil vom 05.07.2024
– 8 A 3194/21 –

Eine muslimische Frau aus Neuss, die beim Autofahren aus religiösen Gründen ihr Gesicht bis auf einen Sehschlitz verhüllen möchte, hat keinen Anspruch auf eine Befreiung vom Verhüllungsverbot.

Die Bezirksregierung Düsseldorf muss jedoch ihren Antrag auf eine Ausnahmegenehmigung erneut prüfen. Das entschied das Oberverwaltungsgericht und gab der Berufung der Klägerin teilweise statt.

Die Frau wollte aus religiösen Gründen eine Ausnahmegenehmigung vom Verhüllungsverbot beim Autofahren.

Nachdem die Bezirksregierung Düsseldorf dies abgelehnt hatte, klagte sie zunächst vor dem Verwaltungsgericht Düsseldorf.

Als dieses die Klage abwies, wandte sie sich an das Oberverwaltungsgericht Münster. Auch dieses entschied, dass kein Anspruch auf Befreiung vom Verhüllungsverbot besteht.

Das Gericht erklärte, dass die 2017 eingeführte Regelung der Straßenverkehrsordnung verfassungsgemäß ist.

Diese Regelung soll die Erkennbarkeit und Identifizierbarkeit von Fahrern bei Verkehrskontrollen sicherstellen und die Rundumsicht gewährleisten.

Dies dient dem Schutz von Leben, Gesundheit und Eigentum anderer Verkehrsteilnehmer. Die Religionsfreiheit hat hier keinen Vorrang.

Dennoch kann individuellen Anliegen durch eine Ausnahmegenehmigung Rechnung getragen werden.

Die Klägerin hat jedoch keinen direkten Anspruch auf eine solche Ausnahmegenehmigung, da dies im Ermessen der Behörde liegt.

Die Bezirksregierung Düsseldorf hat ihr Ermessen bei der Ablehnung des Antrags nicht fehlerfrei ausgeübt und muss daher neu entscheiden.

Die Behörde hat die Religionsfreiheit nicht ausreichend gegen die Gründe für das Verbot abgewogen.

Zudem hat sie nicht ausreichend geprüft, ob alternative Maßnahmen wie ein Fahrtenbuch die Ziele des Verbots erreichen könnten.

Eine Revision wurde nicht zugelassen, es besteht jedoch die Möglichkeit, Beschwerde beim Bundesverwaltungsgericht einzulegen.

Fossilfreund Tilman Kuban will die Energiewende ausbremsen

Mit perfiden Tricks will Kuban der Lobby von der fossilen Energie – Öl, Gas etc. behilflich sein!

Hier zum anhören

YouTube player

Ein Beitrag von

Mario Buchinger Klima #NieWiederIstJetzt

Große Schwachsinnssätze kommen u.a. von Tilman Kuban. Er verbreitet Lügen der #Fossil-Lobby. An seiner Aussage stimmt fast nichts.

—> Er operiert mit falschen Zahlen. Die #Energiewende kostet 1,2 Billionen bis zum Jahr 2035 und nicht 1 über Billion bis 2030. Durch diesen “Trick” macht er die Energiewende gleich mal um einiges teurer. Auf das Jahr gerechnet belaufen sich die Kosten tatsächlich auf ca. 100Mrd.€. Bei Herrn Kubans Rechnung sind es gleich mal 160Mrd€ pro Jahr.

https://www.heise.de/news/Energiewirtschaft-Energiewende-kostet-bis-2035-1-2-Billionen-Euro-9703806.html

—> Er suggeriert, dass es extrem teuer sei und unterstellt aufgeklärten Menschen mangelnden Realismus. Dabei hat er selbst das Problem mit der Realitätsversion. 100Mrd.€ pro Jahr für Deutschland sind sehr wenig. Denn Herr Kuban verschweigt, dass Deutschland jedes Jahr
—> 65Mrd.€ für klimaschädliche Subventionen,
—> über 100Mrd.€ für fossile Energieträger
ausgibt und durchschnittlich jährlich 6,6Mrd.€ als Folgen von Naturkatastrophen investieren muss, Tendenz steigend.

Allein die Ahrtal-Überflutung schlägt mit 40Mrd€ zu Buche.

https://www.bmuv.de/pressemitteilung/hitze-duerre-starkregen-ueber-80-milliarden-euro-schaeden-durch-extremwetter-in-deutschland


Hinzu kommen weitere Kosten durch Produktivitätsverluste, unterbrochene Lieferketten und gestiegene Gesundheitskosten. Rechnet mal alles zusammen, sind 100Mrd.€ dagegen nichts.

—> Die Energiewende ist eine Investition und keine Kosten. Herr Kuban tut so, als wären das immense Kosten, die sich erst rechnen müssten. Müssen sie nicht, diese Investitionen sind die Lebensversicherung für unsere Gesellschaft.

—> Über das Tempo kann Herr Kuban gerne sprechen, jedoch interessiert sich die Natur nicht dafür, dass #GesternKleber wie Herr Kuban kein Bock auf Veränderung haben. Entweder kriegen wir die Kurve, oder wir haben ein Problem. Was realistische Ziele sind, bestimmt nicht die Faktenaversion der Fossil-Fans, sondern die Regeln der Natur.

—> Die Investitionsbedingungen in den USA sind hauptsächlich deswegen so gut, weil #IRA regenerative Energien massiv fördert. Also genau das, was Herr Kuban durch solche Beiträge sabotieren will. Das führt u.a. dazu, dass Oil-States wie Texas mittlerweile massiv Windenergie bauen https://lnkd.in/dm7uR9mJ). Aber auch das scheint Herrn Kuban noch keiner erklärt zu haben.

Wind und Sonne schicken keine Rechnung. Lieferanten von Öl, Gas, Kohle und auch Uran dagegen sicher. Und die meisten dieser Rohstoffe kommen aus Staaten mit verbrecherischen Diktaturen. Ein #Diktator wie #Putin finanziert mit Gas, Öl und Uran den mörderischen Krieg in der #Ukraine. Aber das stört Herrn Kuban offenbar nicht.

Genau durch solche BS-Forderungen werden auch #Rechtsradikale wie #noafd stärker. Herr Kuban behauptet letztlich den gleichen Unsinn wie der braune Sumpf und damit wirken deren schwachsinnige Aussagen nicht mehr so schmuddelig.

——

Ein Kommentar von

Werner Hoffmann
Demokrat der Mitte

Da versucht der Nachwuchszögling Tilman Kuban schon mal in die Schuhe seiner CDU-Fossilanhänger hineinzuschlüpfen und meint, dass er die Kosten der Energiewende nochmals torpediert.

Er rechnet mit Kosten von 1 Billion Euro bis 2030, während eine Kostenschätzung von dem Bundesverband der Energiewirtschaft 1,2 Billionen bis 2035 rechnet.

Und auch diese Zahlen sind und müssen nicht so hoch sein.

Man sollte hier auch die Lobbyarbeit des Bundesverbandes der Energiewirtschaft nicht übersehen! Denn je höher die geschätzten Kosten sind, desto mehr ist es ja auch für diesen Wirtschaftszweig gerechtfertigt, hohe Preise später durchzusetzen, damit die Gewinnmarge auch ansteigt.

Warum müssten die Kosten nicht so hoch sein?

Dass das Stromnetz ausgebaut werden muss, also auch beispielsweise Stromtrassen und vor allem die Umspannwerke erneuert und in der Größe angepasst werden müssen, ist klar.

Ein Beispiel: Ich habe selbst auf Luft/Luft-Wärmepumpe umgestellt (im Januar 2022 vor dem russ. Angriffskrieg) Gasverbrauch noch bei ca. 25 Euro pro Monat (160 qm Wohnfläche). Der Strom ist etwas angestiegen. Die Gesamtkosten (Gas und Strom) haben sich um ca 40% reduziert, wobei der Energieverbrauch durch Strom etwas zugenommen hat.

Ebenso habe ich ein Fahrzeug von Hybrid auf Vollstromer umgestellt. Obwohl ich zwei Wallboxen mit jeweils 11 kWh habe, darf ich diese Gesamtleistung nicht auf 22 kWh umstellen, denn sonst würden andere Verbraucher auch 22 kWh haben wollen und das würde das Stromnetz nicht schaffen.

—-

Der Bundesverband der Energiewirtschaft hat aufgrund des Gutachtens von EY folgendes errechnen lassen:

Die deutsche Energiewirtschaft muss nach eigenen Angaben bis 2030 in die Energiewende rund 721 Milliarden Euro investieren. Bis 2035 kämen weitere 493 Milliarden Euro hinzu, geht aus einer Analyse des Bundesverbands der Energie- und Wasserwirtschaft (BDEW) hervor….“

Und schon hier muss ich mich fragen, warum die Spezialisten der Energieversorgung ein Gutachten in Auftrag geben müssen!!??? Ist dieser Bundesverband nicht selbst in der Lage diese Kosten einzuschätzen? Oder möchte man den Anschein der Unabhängigen Bewertung wahren?

Dieses Vorgehen erinnert mich daran, wie EY oder andere Unternehmensberater schon andere Bewertungen, Gutachten etc. zum Wohle der Auftraggeber verfasst oder geprüft hatten.

Zum Schein ist so ein externes Gutachten natürlich gaaaaaanz dolllllll.

Nun aber der Hauptkritikpunkt:

Mir konnte noch niemand erklären, warum neben einem Stromnetz noch Gasnetze oder Fernwärmenetze notwendig sind.

Auf ein Stromnetz kann man nicht verzichten, denn Strom ist allgegenwärtig und ohne Strom geht auch keine Gas- oder Ölheizung und auch keine Fernwärme.

Eigentlich würde kein anderes Netz – zumindest für die Privathaushalte und die meisten Kleinbetriebe notwendig sein.

Warum bestimmte Interessenvertreter trotzdem auch Gas- und Fernwärmenetze haben wollen, ist einfach erklärt.

Die Gasleitungen werden über 50 Jahre abgeschrieben und müssen auch teilweise immer wieder erneuert werden.

Würden Gasnetz abgeschafft und dafür Fernwärme verlegt, dann entsteht hier eine Kompensation.

Würden die Gasleitungen durch Strom übernommen, dann wäre dies zwar zumachst für das Gasnetz eine Sonderabschreibung, allerdings würden dann trotzdem weitere Wartugskosten bestehen; zumindest so lange, bis durch das Bundesverfassungsgericht irgendwann entschieden wird, dass es keinen Versorgungsanspruch auf ewiges Gas gibt. Und dies würde Jahrzehnte dauern. Und es reicht schon ein Kläger in einer Gemeinde aus, damit das Gasnetz dann weiter bestehen muss.

Die Gasnetzkosten bleiben bestehen. Und wenn nun etwa 60 Prozent der Gasverbraucher wegfallen, weil diese dann zu Fernwärme oder zur eigenen Wärmepumpe wechseln, dann sind die Netzkosten bei Gas und Fernwärme extrem höher, denn die Netz sind ja (bis auf den Hausanschluss) überall verlegt.

Und was passiert, wenn Fernwärme kommt

Bei der Fernwärme ist bekannt, dass zumindest derzeit meist fossile Energie verwendet wird. Blockheizkraftwerke werden derzeit zu 80 % mit fossiler Energie befeuert. Blockheizkraftwerke können Strom und Wärme erzeugen, die Effizienz ist allerdings im Sommer nicht gut, da die Wärme nicht ausreichend genutzt werden kann. Dieser Effekt ist ja auch bei Verbrennerfahrzeugen zu finden. Der Motor muss beim Verbrenner gekühlt werden, damit er nicht zerstört wird….

Fernwärme hat jedoch – selbst dann wenn es mit erneuerbaren Energie gespeist wird den Nachteil, dass

– zum einen am Endpunkt eine Temperatur von mindestens 55 bis 60 Grad Celsius ankommen muss

– zum anderen – je nach Leitungslänge – etwa 10 bis 20 Prozent der Energie aufgrund des Wärmeverlustes in den Netzen verloren gehen.

Bei Ein- und Zweifamilienhäusern sind eigene Wärmepumpen in 95 Prozent aller Bestandsbauten unschlagbar.

Bei Mehrfamilienhäuser sind Nahkraftwerke, die wie große Wärmepumpen funktionieren und die Restwärme aus der Luft und dem Erdreich (erneuerbare Energie) kommen, ebenfalls sinnvoll (ggf. gekoppelt mit Photovoltaik auf und an dem Gebäude).

Das Frauenhofer Institut in Freiburg forscht hier bereits seit vielen Jahren. Nur in 40 % aller Bestandsbauten müssen größere oder neuere Heizkörper eingebaut werden.

In 5 Prozent wären weitere energetische Maßnahmen notwendig.

Fernwärme selbst hat übrigens auch den großen Nachteil, dass man den Energieanbieter nicht wechseln kann!

Resümee:

Ein Gutachten, das ein Spezialist bei einer Unternehmensberaterfirma in Auftrag gibt, hat meiner Sicht nur folgenden Sinn: „Bestätige mir bitte, dass meine Ziele richtig sind und bestätige mir dies in einem Gutachten, das ich Dir bezahle…“

Bereits im Sommer 2023 hatte ich mehrfach folgende Artikel zu diesem Thema gepostet:

1. Was mir noch niemand wirklich erklären konnte. —> Stromleitungen müssen überall verlegt sein oder müssen so oder so erneuert und verstärkt werden. Warum ist es notwendig, DASS NOCH EIN ZWEITES UND SOGAR DRITTES #LEITUNGSSYSTEM FÜR #GAS UND / ODER #FERNWÄRME GEBAUT UND GEWARTET WERDEN MUSS?

—> https://blog-demokratie.de/index.php/2023/09/08/was-mir-noch-niemand-wirklich-erklaeren-konnte-stromleitungen-muessen-ueberall-verlegt-sein-und-muessen-so-oder-so-erneuert-und-verstaerkt-werden/

2. Warum brauchen wir denn neben einer Stromleitung noch unbedingt Gasleitung, Fernwärmenetz? Was mir noch niemand wirklich erklären konnte.

—> https://blog-demokratie.de/index.php/2023/08/16/warum-brauchen-wir-denn-neben-einer-stromleitung-noch-unbedingt-gasleitung-fernwaermenetz/

E-Traktor – Landwirtschaft VollstromerTraktor

Ein Beitrag von

Peter Jelinek

So gehts:

Ein Ehepaar aus Schnaitsee in Bayern hat einen 140 PS starken Prototyp eines E-Traktors namens Tadus entwickelt und will damit eine Marktlücke füllen.

https://www.br.de/nachrichten/deutschland-welt/akku-statt-diesel-tueftler-ruestet-seinen-oldtimer-traktor-um,TZPcoVi

Wir erinnern uns:

Wie groß der Aufschrei war, als der Agrardiesel gestrichen wurde?

Angesichts der fossilen Abhängigkeit der Landwirtinnen und Landwirte ist das sogar verständlich.

Der Markt liefert derzeit kein wirkliches Angebot – und wenn, dann entweder nur als Prototypen und Einzelfahrzeuge.

5 bis 8 Stunden ist der Traktor einsatzfähig, die Ladezeit beträgt derzeit noch rund 5 Stunden.

Für den Betrieb ist das zu lang, weshalb der Akku austauschbar ist.

Aus dem ehemaligen Diesel-Traktor soll so ab 2025 eine in Serie entstehende E-Traktor-Reihe werden.

Ob es was wird?

Wird sich zeigen.

Die Zeichen stehen auf ja, angesichts der enorm fallenden Batteriepreise, der spotbilligen Solarenergie und den großen Flächen über Agri-PV bis hin zu Solar-Dachflächen, die Landwirt*innen zur Verfügung haben.

Für mich zeigt es einmal mehr: Die Elektrifizierung ist nicht zu stoppen.

Die Daumen für das Projekt sind gedrückt!

——

Kommentar von

Werner Hoffmann
Demokrat der Mitte

Für mich sind E-Fahrzeuge die Zukunft.

Und dies nicht nur, weil die Akkus inzwischen sehr nachhaltig sind (siehe unten), sondern auch weil viele Bauteile überflüssig sind und somit die Wartungskosten um 30 bis 40 Prozent geringer sind.

Welche Autoteile sind beim Elektrofahrzeug nicht mehr notwendig?

– kein Ölwechsel, 

– kein Zündkerzenwechsel, 

– kein Luftfilterwechsel, 

– kein Verbrennermotor, 

– Keine Kühlleitungen für Motorkühlung

– kein Keilriemen, 

– kein Auspuff, 

– kein Katalysator, 

– kein Vergaser, 

– keine Einspritzanlage, 

– keine Kupplung, 

– kein Getriebe, 

– kein Benzintank, 

– keine Benzinleitung

Stichwort Kfz-Steuer

Wer einen #Stromer fährt, bezahlt auch keine Kfz-Steuer bis 2030.

Neben diesen günstigeren Kosten ist auch der Aufwand für Energie erheblich geringer.

—-

Stichwort Akkus bei Elektrofahrzeugen

Die Nachhaltigkeit von Akkus für Elektrofahrzeuge hat sich in den letzten Jahren erheblich verbessert, dank Fortschritten in der Technologie und in den Produktionsprozessen. Hier sind einige wichtige Aspekte:

Rohstoffgewinnung und Recycling

  • Rohstoffe: Die Gewinnung von Rohstoffen wie Lithium, Kobalt und Nickel hat erhebliche Umwelt- und soziale Auswirkungen. Allerdings gibt es Fortschritte in der Entwicklung von Batterien, die weniger von problematischen Materialien abhängen. Zum Beispiel wird verstärkt an Kobalt-freien Batterien gearbeitet .
  • Recycling: Die Recyclingtechnologien für Batterien haben sich weiterentwickelt. Unternehmen wie Tesla und Redwood Materials arbeiten an effizienten Recyclingmethoden, die einen Großteil der Materialien aus gebrauchten Batterien zurückgewinnen können. Diese Materialien können dann für die Produktion neuer Batterien verwendet werden, was den Bedarf an neuen Rohstoffen reduziert .

Produktionsprozesse

  • Energieverbrauch: Die Energieintensität der Batterieproduktion ist ein kritischer Faktor. Einige Hersteller setzen auf erneuerbare Energien in ihren Produktionsprozessen, um die CO₂-Bilanz zu verbessern. Beispielsweise betreibt Tesla seine Gigafactorys teilweise mit Solarenergie .
  • Fortschritte in der Effizienz: Neue Produktionstechniken und -materialien haben die Effizienz und die Lebensdauer von Batterien erhöht. Langlebigere Batterien bedeuten weniger häufigen Austausch und somit eine geringere Umweltbelastung über die Lebensdauer eines Elektrofahrzeugs .

Lebenszyklus und Zweitverwendung

  • Lebensdauer: Moderne Batterien haben eine längere Lebensdauer als ihre Vorgänger. Dies bedeutet, dass sie über viele Jahre hinweg genutzt werden können, bevor sie recycelt werden müssen.
  • Zweitverwendung: Batterien, die in Elektrofahrzeugen nicht mehr die erforderliche Leistung bringen, können für stationäre Energiespeicher verwendet werden. Diese Second-Life-Anwendungen erhöhen die Gesamtlebensdauer der Batterien und tragen zur nachhaltigen Nutzung bei .

Forschung und Innovation

  • Neue Technologien: Es wird kontinuierlich an neuen Batteriechemien geforscht, die weniger umweltbelastend sind und eine höhere Energiedichte bieten. Beispiele sind Feststoffbatterien und Lithium-Schwefel-Batterien .
  • Reduktion der Abhängigkeit von kritischen Materialien: Forschungen zielen darauf ab, die Abhängigkeit von seltenen und umweltbelastenden Materialien zu reduzieren, was die Nachhaltigkeit weiter verbessern könnte .

Insgesamt haben sich die Nachhaltigkeitsaspekte von Elektrofahrzeugbatterien durch technologische Fortschritte und verbesserte Recyclingmethoden deutlich verbessert. Dennoch bleibt die kontinuierliche Weiterentwicklung und Implementierung dieser Technologien entscheidend, um die Umweltbelastung weiter zu reduzieren.

——-

Stichwort: Lange Ladezeiten

Auch dieses Argument zählt nicht mehr.

Beispiele:

Der Aufi Q8 – 55 e-tron hat eine Ladezeit von 31 Minuten von 10 auf 80 %

Der neue VW ID.2 schafft es in 21 Minuten.

Darüberhinaus gibt es in vielen Bereichen inzwischen auch Systeme, bei denen die kompletten Akkus einfach getauscht werden.

In China ist dies inzwischen Alltagstauglich geprüft.

Akkutausch beim LKW

Und auch in Bayern gibt es gute Ansätze

Link https://www.br.de/nachrichten/deutschland-welt/akku-statt-diesel-tueftler-ruestet-seinen-oldtimer-traktor-um,TZPcoVi

Kleine Stromer um 25.000 Euro werden immer mehr

Ein Beitrag von

Werner Hoffmann
Demokrat der Mitte

Die Anzahl der Vollstromer nimmt immer mehr zu.

Gerade auch im Kleinwagen- Marktsegment wird es wichtig, dass das Angebot an vollelektronischen Elektrofahrzeugen zunimmt.

VW möchte in 2025 den ID.2 mit einem Preis von unter 25.000 Euro auf den Markt bringen und wird in der Mittelklasse wohl das Ziel haben zum VW-Volksstromer zu werden.

Link: https://www.volkswagen.de/de/elektrofahrzeuge/elektrofahrzeugkonzepte/ID2-for-all.html?campaign=10003580%7CID_Concept_AO&language=DE&adchan=seah&publisher=GOGL&country=DE&adplt=pseac&cpid=&adver=p76172212859&format=NU&adpay=pd&adpl=adtext&adcr=vw+id2&adgroup=ID2all_%5BAMT%5D&seatype=branded&gad_source=1&gclid=Cj0KCQjw-ai0BhDPARIsAB6hmP4551Vy8pDV2KiGyfYWcUuHHHgUf0kSxVzyJ5M6tVMee-pdzhszk30aAmRkEALw_wcB&gclsrc=aw.ds

Aber auch eine Klasse darunter tut sich etwas.

Zitat: Quelle n-tv

Günstig, aber gut ausgestattet
Hyundai Inster – ein E-Auto schon ab 23.000 Euro

Link https://www.hyundai.com/de/de/modelle/der-neue-inster.html

Elektroautos unter 25.000 Euro sind noch sehr selten. Nach Citroen, Dacia und Renault hat auch Hyundai demnächst ein Angebot in diesem Segment. Aber was bietet der Hyundai Inster für das Geld?

Hyundai bringt Ende des Jahres einen kleinen Stromer zu Preisen ab circa 23.000 Euro nach Deutschland. Das 3,83 Meter lange E-Auto hört auf den Namen Inster und positioniert sich preislich gegen Dacia Spring und Citroen C3, aber auch gegen die kommende Basisversion des Renault 5.

Nach Verzicht sieht der Inster nicht aus. Reminiszenzen an den ersten Fiat Panda und den Suzuki Ignis drängen sich durch die gelungene Mischung aus Ecken und Kanten sowie einigen Rundungen auf. Die runden Leuchten erinnern dagegen an einen Jeep. Das Designpaket wirkt aber stimmig. Der für die Fahrzeuggröße lange Radstand (2,58 Meter) drängt die Achsen weit nach außen. Die Formgebung deutet es an: Das Platzangebot des Viertürers ist für die Fahrzeugklasse gut. Der Lichteinfall durch das große Glasdach unterstützt das luftige Gefühl.

…..

Hyundai bietet den Inster in der Basisversion mit einem 42-kWh-Akku an, der für eine Reichweite von rund 300 Kilometern gut sein soll. Als Alternative steht eine 49 kWh große Batterie zur Wahl, hier sind bis zu 350 Kilometer möglich. Als WLTP-Verbrauch gibt Hyundai für beide Varianten je 15,3 kWh an. Der kleine Akku ist an einen 97 PS E-Motor-gekoppelt, der größere kommt mit einem 115-PS-Motor. Der Antrieb erfolgt immer über die Vorderräder. One-Pedal-Driving mit 3 Rekuperationsstufen ist möglich. Ein 11-kW-Onboard-Charger ist immer an Bord, an einer Schnellladesäule zieht der Inster mit maximal 85 kW Leistung Strom. Der Ladestecker befindet sich vorn, der Kleinwagen ist also ein Nasenlader. Eine Wärmepumpe gibt es gegen Aufpreis…..“

——-

Mein Kommentar:

Es ist gut, dass es immer mehr Elektrofahrzeuge gibt. Und es ist besonders schön, wenn ein Elektrofahrzeug aus Deutschland – oder mindestens aus der EU beziehungsweise aus einem demokratischen Land – kommt.

Elektrofahrzeuge sind aus meiner Sicht auch die effektiveren Fahrzeuge.

Die Wartungskosten sind etwa 30 bis 40 Prozent geringer. Dies ergibt sich schon aus dem Umstand, dass die Elektrofahrzeuge unterschiedliche Bauteile nicht benötigen.

Welche Autoteile sind beim Elektrofahrzeug nicht mehr notwendig?

– kein Ölwechsel, 

– kein Zündkerzenwechsel, 

– kein Luftfilterwechsel, 

– kein Verbrennermotor, 

– Keine Kühlleitungen für Motorkühlung

– kein Keilriemen, 

– kein Auspuff, 

– kein Katalysator, 

– kein Vergaser, 

– keine Einspritzanlage, 

– keine Kupplung, 

– kein Getriebe, 

– kein Benzintank, 

– keine Benzinleitung

Stichwort Kfz-Steuer

Wer einen #Stromer fährt, bezahlt auch keine Kfz-Steuer bis 2030.

Neben diesen günstigeren Kosten ist auch der Aufwand für Energie erheblich geringer.

Vergleicht man unter der heutigen Grundlage der heutigen Benzinpreise und Strompreise die Kosten, dann ergibt sich beim Stromer ein Preis von ca. 4 bis 5 Euro je 100 km. Ein Benziner dürfte dann auf 100 km nur 2,5 Liter Benzin verbrauchen (bei 1,8 € je Liter).

Auf die kommenden Jahre betrachtet wird der Benzinpreis im Vergleich zum Strompreis jedoch deutlich ansteigen.

Liegt der Benzinpreis bei 2,10 bis 2,20 Euro (so wie dies heute in den Niederlanden schon der Fall ist

• Superbenzin (Unleaded 95): etwa 2,18 € pro Liter • Diesel: etwa 1,84 € pro Liter • LPG (Autogas): etwa 0,75 € pro Liter

, dann dürfte der Benziner nur noch rund 1,8 Liter auf 100 km verbrauchen.

Die Verbrenner sind out, die Elektrofahrzeuge werden in allen Bereichen den KfZ-Markt mittelfristig übernehmen.

Ja, für die Zulieferindustrie (siehe oben genannte Bauteile, die nicht mehr notwendig sein werden) wird es eine große Herausforderung werden.

Die Zulieferindustrie muss diese neue Herausforderung annehmen und entweder andere Marktsegmente finden oder eben neue Produktbereiche generieren.

Als das Automobil den Personentransport von den Kutschern übernommen hatte, mussten die Kutscher, Schmiede und anderen Zulieferer (Heu, Hufeisen etc.) auch nach neuen Absatzwegen bzw. Produkten suchen.

Und auch als in der Druckerbranche der Setzdruck überflüssig wurde (ca. 1975) und später auch Hochdruck, Tiefdruck durch den Digitaldruck ergänzt wurde, mussten viele Druckereien schließen und in anderen Bereichen tätig sein (z.B. Werbebranche).

Die Welt dreht sich – Es wird sich immer wieder verändern und es wird immer wieder neue Herausforderungen geben.

Momentan sichtbare Ereignisse durch den menschengemachten Klimawandel

Dem Klima ist die politische Macht scheiss egal – Das Klima sagt sich einfach: Dann gibts eben keine Menschen mehr. shit Happens..

Zum Anhören—>

YouTube player

Ein Beitrag von

Peter Jelinek

In schätzungsweise 6 Monaten wird das Haus vom Anstieg des Meeresspiegel verschwunden sein. Was vorher 1,9 Millionen US-Dollar wert war, wurde mit viel Glück für 200.000 $ verkauft. Nur ein Beispiel, was die Folgen durch stärkere Stürme, Erosion und – wie andere Beispiele folgend zeigen – der Klimakrise sind. Doch genau deswegen erfordert die Anpassung und der Klimaschutz eine langfristige Denkweise.

Das Haus auf Nantucket
Die Insel im US-Bundesstaat Massachusetts ist nur ein kleines Beispiel für Erosion durch Stürme, die durch die Klimakrise zunehmen. Satellitenbilder der letzten 3 Jahrezehnte zeigen, wie viel von dem Gebiet vom Meer verschluckt wurde. Die jüngsten Stürme zeigten die volle Wirkung, die Erosion setzte ein.

Das Haus selbst steht aber stellvertretend für viele Küstenregionen, die sich in den nächsten Jahrzehnten und Jahrhunderten auf steigende Meeresspiegel oder stärkere Stürme und damit mehr Erosion auseinandersetzen müssen. Auch wenn die Niederlande das „achte technische Weltwunder“ erbauten, um die Küste vor Sturmfluten zu schützen, kommen sie jetzt an ihre Grenzen.

„Wir können einen 2 bis 5 Meter hohen Anstieg schon in den nächsten 127 Jahren nicht mit Sicherheit ausschliessen“, sagt die Klimawissenschaftlerin Aimée Slangen vom niederländischen Meeresforschungsinstitut NIOZ. Das wird bei einem Bruch mit dem 1,5-Grad-Klimaziel erwartet. Mittlerweile wird von einem Mega-Deich weit vor der Küste debattiert, der sich über Belgien, Deutschland, Dänemark zieht.

Wie das weltweite Abschmezlen vorangeht
Wie real diese Szenarien sind, zeigen die Klimadaten – aber auch kürzlich neue Erkenntnisse aus Alaskas „ewigem Eis“. Dort verschwinden die Gletscher deutlich schneller, als bislang angenommen.

Bisher ging man davon aus, dass sie linear abschmelzen. „Aber statt einer gleichmäßigen Zunahme beobachten wir, dass Schwellenwerte überschritten werden und sich die Schmelze rapide beschleunigt“, sagt die Geografin Bethan Davies, die dort dazu forscht.

Dank ihrer Rekonstruktionen der vergangenen 250 Jahre konnte die „dramatische Beschleunigung“ des Gletscherrückzugs und Eismassenverlusts festgestellt werden, die sich seit 2 Jahrzehnten abgespielt haben. Eine ähnliche Entwicklung erwartet sie nun auch für andere Eisfelder Alaskas, Kanadas und Grönlands: Eines nach dem erreicht wohl den Kipppunkt.

Das wiederum hat enorme Folgen: Schmelzen die Gebirgsgletscher, trägt das neben dem Verlust der beiden großen Eisschilde an den Polkappen mehr als 1/5 zum Meeresspiegelanstieg bei.

Und politisch?
Sind solche Megaprojekte wie oben gezeigt derzeit nicht real. Erst um 20 Zentimeter ist der Meeresspiegel in den letzten 115 Jahren angestiegen und solange die Füße trocken bleiben, ist es kein Thema im Wahlkampf.

Noch absurder ist es übrigens in Florida: Schulbuchautor*innen müssen Verweise auf den Klimawandel streichen, um Floridas Zustimmung zu erhalten. Seit Kurzem ist das Wort Klimawandel dort mehr oder weniger zensiert.

——

Ein Kommentar von

Werner Hoffmann
Demokrat der Mitte

Dass der Meeresspiegel auch an der Nordsee ansteigt und die Stürme zunehmen, führt dazu, dass auch im Hohen Norden Pfahlbauten in St. Peter Ording weiter ins Landesinnere gelegt werden müssen.

Das Klima ist weder links noch rechts und wird – wenn wir Menschen nicht schnell gegensteuern – unsere komplette Zivilisation zerstören.

Der Mensch und andere große Säugetiere können nicht überleben, wenn die Temperatur dauerhaft hoch bleibt.

Das Kühlsystem des Menschen, hauptsächlich durch Schwitzen reguliert, kann bei extrem hohen Temperaturen und hoher Luftfeuchtigkeit an seine Grenzen stoßen.

Was meint hierzu ChatGPT?

Funktionsweise des menschlichen Kühlsystems

  1. Schwitzen: Wenn die Körpertemperatur steigt, beginnen die Schweißdrüsen, Schweiß zu produzieren. Dieser Schweiß besteht hauptsächlich aus Wasser, aber auch aus Salzen und anderen Elektrolyten.
  2. Verdunstung: Der Schweiß verdunstet von der Hautoberfläche, wodurch Wärmeenergie abgeführt wird. Dieser Verdunstungseffekt kühlt die Haut und das darunter liegende Blut, was zur Senkung der Körpertemperatur beiträgt.
  3. Durchblutung: Bei hohen Temperaturen erweitert sich die Hautdurchblutung (Vasodilatation), wodurch mehr Blut an die Hautoberfläche gelangt und Wärme effizienter abgegeben wird.

Grenzen des Kühlsystems

  • Hohe Temperaturen und Luftfeuchtigkeit: Bei sehr hohen Temperaturen (über 35 °C) und besonders bei hoher Luftfeuchtigkeit (über 60-70%) funktioniert das Kühlsystem des Körpers durch Schwitzen nicht mehr effektiv. Hohe Luftfeuchtigkeit verhindert die effiziente Verdunstung von Schweiß, weil die Luft bereits mit Wasserdampf gesättigt ist. Dies führt zu einer verminderten Wärmeabgabe und steigenden Körpertemperaturen.
  • Kritische Temperatur: Wenn die Umgebungstemperatur über die Hauttemperatur steigt (ca. 35 °C), kann der Körper keine Wärme mehr durch Konvektion und Strahlung abgeben. In extremen Fällen, wie bei Temperaturen über 40-42 °C, und insbesondere bei hoher Luftfeuchtigkeit, kann das Risiko eines Hitzeschlags steigen. Ein Hitzeschlag ist ein medizinischer Notfall und tritt auf, wenn die Körpertemperatur auf über 40 °C steigt, wodurch zentrale Nervensystemfunktionen beeinträchtigt werden und es zu Organversagen kommen kann.

Fazit

Das Kühlsystem des Menschen durch Schwitzen funktioniert am besten bei niedrigen bis mittleren Temperaturen und moderater Luftfeuchtigkeit. Bei extrem hohen Temperaturen und hoher Luftfeuchtigkeit kann der Körper seine Wärme nicht mehr effektiv abgeben, was zu gefährlichen Gesundheitszuständen wie Hitzschlag führen kann. Daher ist es wichtig, bei solchen Bedingungen Maßnahmen wie Hydration, Schatten und Kühlung zu ergreifen.

Aber als es sehr heiße Phasen auf der Erde gab, da lebten doch auch Dinosaurier und auch andere Säugetiere. Oder?

Antwort:

Ja, es gab in der Erdgeschichte Phasen extrem hoher Temperaturen, während denen sowohl Dinosaurier als auch frühe Säugetiere lebten. Dabei gibt es einige wichtige Aspekte zu berücksichtigen:

Dinosaurier und hohe Temperaturen

  1. Anpassungsfähigkeit: Dinosaurier lebten während der Mesozoischen Ära, insbesondere im Trias, Jura und Kreidezeit. Während dieser Zeit waren die globalen Temperaturen oft höher als heute. Dinosaurier hatten verschiedene Anpassungen entwickelt, um in diesen warmen Klimazonen zu überleben. Einige könnten spezielle Hautstrukturen oder Verhaltensanpassungen gehabt haben, um mit der Hitze umzugehen.
  2. Geografische Verteilung: Dinosaurier waren weit verbreitet und lebten in verschiedenen Klimazonen. Während einige in tropischen Gebieten lebten, gab es auch Dinosaurier, die in gemäßigten und sogar polaren Regionen vorkamen, die damals wärmer waren als heute.

Frühe Säugetiere und hohe Temperaturen

  1. Lebensweise: Frühe Säugetiere, die zur Zeit der Dinosaurier lebten, waren meist klein und führten wahrscheinlich eine nachtaktive Lebensweise. Dies hätte ihnen geholfen, den extremen Temperaturen am Tag zu entgehen und die kühleren Nächte zu nutzen.
  2. Anpassungen: Diese frühen Säugetiere hatten möglicherweise auch spezialisierte Anpassungen, um mit hohen Temperaturen umzugehen, wie das Graben von Höhlen oder die Nutzung von Schatten und Wasserquellen zur Kühlung.

Evolution und Umweltanpassungen

Es ist wichtig zu beachten, dass sich sowohl Dinosaurier als auch frühe Säugetiere über Millionen von Jahren entwickelt haben und dabei spezifische Anpassungen an ihre jeweiligen Umgebungen entwickelt haben. Das Klima war in verschiedenen Erdzeitaltern sehr unterschiedlich, und die Lebewesen haben sich entsprechend angepasst.

Vergleich zur heutigen Situation

Der Unterschied zu heute besteht darin, dass der Mensch relativ kurzfristig in extrem heiße Klimazonen eindringt oder diese durch den Klimawandel verstärkt werden. Moderne Menschen sind biologisch nicht so gut an extreme Hitze angepasst wie viele der Tiere, die während wärmerer Erdzeitalter lebten. Menschen müssen daher Technologien und Verhaltensstrategien nutzen, um in extrem heißen Umgebungen zu überleben, wie Klimaanlagen, geeignete Kleidung und Hydratation.

Zusammengefasst haben sowohl Dinosaurier als auch frühe Säugetiere in sehr heißen Klimaphasen überlebt, weil sie im Laufe von Millionen Jahren spezifische Anpassungen entwickelt haben, die ihnen das Überleben in diesen Umgebungen ermöglichten.

Ein Mensch mit einer Größe von 1,60 bis 2,00 m hätte damals nicht überlebt.

Nun, vielleicht überleben wir ja doch noch, indem wir wieder auf die Größe der Unbedeutenden von 10 bis 20 cm schrumpfen…..

Festkörperbatterie für Auto – bis zu 1.500 km Reichseite

Toyota unterzeichnet Vertrag zur Massenproduktion von Festkörperbatterien für Elektrofahrzeuge mit einer Reichweite von 1.500 km

Der Einsatz von Materialien, die von Idemitsu Kosan entwickelt wurden, wird es Toyota ermöglichen, diese energiedichten Batterien bis 2028 auf den Markt zu bringen.

Toyota hat mit seinem japanischen Kollegen Idemitsu Kosan einen Vertrag über die Massenproduktion von Elektrofahrzeugen mit ultrahoher Reichweite und Festkörperbatterien abgeschlossen .

Idemitsu Kosan, Japans zweitgrößter Ölraffinierer, scheint ein unwahrscheinlicher Partner für den EV-Bereich zu sein. Toyota sagt jedoch , dass Idemitsu seit 2001 an der Entwicklung der „Elementartechnologien“ für die Batterien arbeitet, fünf Jahre bevor Toyota 2006 begann, sie zu verfolgen.

Es ist das erste große Update zu den Plänen des Unternehmens , als Erster diese Batterien der nächsten Generation anzubieten. Toyota sagt, dass die neue Technologie aufgrund der höheren Energiedichte letztendlich dazu führen wird, dass Elektrofahrzeuge mit einer einzigen Ladung 932 Meilen zurücklegen und in nur 10 Minuten hochfahren können.

Konkret hat Idemitsu an der Entwicklung eines neuen Materials für die Batterien gearbeitet, einem festen Sulfidelektrolyten.

Mit der Partnerschaft möchte Toyota die Materialkompetenz von Idemitsu mit seiner eigenen Produktionskompetenz kombinieren, um Festkörperbatterien für Verbraucher Wirklichkeit werden zu lassen.

„Diese Zusammenarbeit konzentriert sich auf Sulfid-Festelektrolyte, die als vielversprechendes Material zur Erzielung hoher Kapazität und Leistung für BEVs [Batterie-Elektrofahrzeuge] gelten“, sagt Toyota.

„Sulfid-Festelektrolyte zeichnen sich durch Weichheit und Haftung an anderen Materialien aus, was für die Massenproduktion von Batterien geeignet ist.“

Toyota legte einen Drei-Phasen-Plan mit dem Ziel vor, Festkörperbatterien bis 2027–2028 zu kommerzialisieren. Das bedeutet jedoch nicht, dass Festkörper-Elektrofahrzeuge zu diesem Zeitpunkt weit verbreitet sein werden, da die „Massenproduktion in vollem Umfang“ erst später beginnen wird.

Es bleibt auch abzuwarten, in welchen Märkten Toyota sie einführen würde und wie viel sie kosten würden. Sie dürften teurer sein und dies auch noch über Jahre hinweg bleiben, prognostiziert Reuters .

In der ersten Phase werden Toyota und Idemitsu „gemeinsam an der Entwicklung besserer Sulfid-Festelektrolyte arbeiten und dabei auf Qualität, Kosten und Lieferzeiten achten.“ Dies wird in einer Idemitsu-eigenen Pilotanlage geschehen.

Sobald das Material fertig ist, beginnt die zweite Phase. Zu diesem Zeitpunkt wird Idemitsu eine größere Pilotanlage errichten und „Massenproduktionstechnologie erhalten“. In Phase drei schließlich beginnt die „Vollserien-Massenproduktion“.

Honda hat außerdem Pläne angekündigt , bis zum Ende des Jahrzehnts Elektrofahrzeuge mit Festkörperbatterien einzuführen. Sowohl Honda als auch Toyota stehen in der Kritik, dass sie bei Elektrofahrzeugen langsam vorankommen, insbesondere im Vergleich zu Tesla und dem chinesischen Autohersteller BYD , und sie versuchen aufzuholen.

Anfang des Jahres entließ Toyota einen CEO, der zuvor Bedenken hinsichtlich der Umstellung auf eine vollelektrische Produktpalette geäußert hatte.

Mit einem neuen CEO an der Spitze strukturierte das Unternehmen das Unternehmen dann rund um Elektrofahrzeuge um und ernannte seine Luxusmarke Lexus zum Flaggschiff für Elektrofahrzeuge.

Die Elektrofahrzeugpalette von Toyota besteht derzeit nur aus zwei Modellen, dem Toyota bZ4X und dem Lexus RZ, beide mit durchschnittlicher bis geringer elektrischer Reichweite. Das erste Unternehmen, das Festkörperbatterien anbietet, könnte ihm in einem Bereich, in dem es ins Hintertreffen geraten ist, einen Vorsprung verschaffen.

„Toyota glaubt, dass der Schlüssel zur Veränderung der Zukunft der Autos in einer Zusammenarbeit zwischen der Automobil- und der Energieindustrie liegt“, sagte Koji Sato, Präsident und CEO von Toyota, in einer Pressekonferenz (Video unten).

„Unsere beiden Unternehmen [Idemitsu und Toyota] werden sich zusammenschließen, um Festkörperbatterien zu produzieren und Innovationen mit Ursprung in Japan zu realisieren.“

Übersetzt aus der Internetseite

https://uk.pcmag.com/cars-auto/149135/toyota-inks-deal-to-mass-produce-solid-state-ev-batteries-with-932-mile-range

——-

Nach unserer Einschätzung wird die Luxusklasse Lexus sicherlich auch bei den ersten Modellen dabei sein.

Private Krankenversicherung Debeka

Seit Jahrzehnten ist die Debeka Krankenversicherung die führende Wachstumsmaschine

Woran liegt es, dass die Debeka Krankenversicherung aG seit Jahrzehnten überdurchschnittlich wächst?

Krankenversicherung – #PKV: Wer die meisten #Vollversicherten hinzugewann

private #Krankenversicherung

Der Bestand an Vollversicherungen stagniert in der Privaten Krankenversicherung (PKV). So schafften es nur 14 von 33 Unternehmen in 2022, Kunden in der Vollversicherung hinzuzugewinnen. Versicherugsbote zeigt in seiner neuen Bildstrecke, wem dies am besten gelang.

Und trotzdem gibt es einzelne Private Aktankenvwesichrrungen, die jedes Jahr Netto beständig wachsen.

Auch im letzten Jahr ist die #debeka um 13.158 Vollversicherte gewachsen.

Das Erfolgsrezept ist sicherlich auch, dass die Debeka Krankenversicherung durch die Unternehmensform

  • Versicherungsverein auf Gegenseitigkeit (a.G.) einen genossenschaftlichen Charakter hat
  • im Gesamtkonzern mit der Debeka Lebensversicherung a.G.mit rund 10 Tochtergesellschaften unabhängig von externen Aktionären handeln kann
  • weiter auf Personalausbau setzt.

Neben dem Personalausbau im Außendienst und in der IT setzt die Debeka auch auf Auszubildende und Dualstudenten und ist innerhalb der Branche der führende Ausbildungsbetrieb.

https://www-versicherungsbote-de.cdn.ampproject.org/c/s/www.versicherungsbote.de/id/4912300/PKV-Wer-die-meisten-Vollversicherten-hinzugewann/index.amp

#Debeka #krankenversicherung #Rentenversicherung #Ausbildungsbetrieb #PKV #Dualstudium #Versicherung #private_Krankenversicherung #zukunftgestalten #zukunftgemeinsamgestalten

error

Gefällt Dir der Blog-Demokratie? Einfach weiterempfehlen