„Ich liege mit meinem ENYAQ bei 19kWh pro 100km nach 46.512 gefahrenen Kilometern. Der günstigste Anbieter (ALDI AC) bei dem ich „tanke“ liegt bei 29ct, der teuerste (ENBW DC oder ADAC Aral Pulse) bei 49ct pro kWh. Im Büro26ct. Alles Bruttopreise. Unterwegs zahle ich im Durchschnitt pro 100km zwischen 5,51 Euro und 9,31 Euro. An der eigenen Wallbox 4,94 Euro. Würde ich einen Autostromtarif nehmen (bis zu 5ct günstiger) wären es 3,99 Euro. Mach ich aber nicht weil der von aussen abschaltbar ist wenn es eine Netzüberlastung gibt. Die kleineren E-Autos (Bsp. E-Twingo) in der Firma liegen bei 15kWh Verbrauch. D.h. 3,15€ / 3,90€ / 3,43€ / 7,35€ pro 100km. IONITY 35ct/kWh nutzen wir nicht mehr, da es zu wenige Ladesäulen von diesem Anbieter gibt. Übrigens hatte keiner unserer Mitarbeiter bisher ein Problem und wäre wegen zu wenig Saft im Tank liegengeblieben. Unser Vetriebler genießt es eher im warmen Auto zusitzen und seine Büroarbeit tagsüber an der Ladesäule und nicht am Abend zu Hause zu erledigen 😉 Da unsere nächsten E-Fahrzeuge ein 800V System haben werden, wird er jedoch schneller tippen müssen damit das Auto nicht fertig geladen ist bevor er seine E-Mail geschrieben hat.“
Bereits im Jahr 2027 könnte die Menschheit mehr Nutzenergie aus Wind und Sonne ziehen, als aus der gesamten weltweiten Erdölförderung. Was in vielen Köpfen immer noch als Technologie der Nische oder der fernen Zukunft verankert ist, schickt sich längst an, die „Großen“ unter den Energieträgern zu überholen – und dann abzuschaffen. Das weiß auch big oil.
Dazu ein einfaches Gedankenexperiment:
Im Jahr 2023 stammten weltweit etwa 55.000 TWh Primärenergie aus Erdöl (schraffierte graue Linie in der Grafik). Der ganz überwiegende Teil wird für Mobilität aufgewendet, d.h. in Motoren und Turbinen verbrannt. Doch Verbrennung ist uneffizient. Nach Abzug der Verluste für Raffinierung und Verbrennung landen nur gut 16.000 TWh als Nutzenergie, also als Antriebsenergie auf der Straße bzw. bei Schiffs- und Flugverkehr im Wasser und in der Luft (dicke graue Linie).
Nehmen wir jetzt einmal an, die gesamte Stromerzeugung aus Wind und Sonne würde ebenfalls im Mobilitätssektor genutzt. Von den gut 10.000 TWh Primärenergie im Jahr 2023 (schraffierte grüne Linie) ginge ein viel kleinerer Teil als Systemverluste im Stromnetz und im eigentlichen Antriebssystem des Autos, LKW etc. verloren, so dass über 7.500 TWh als Antriebsenergie genutzt würden (dicke grüne Linie). Elektrifizierung ist effizient.
Und jetzt kommts: bei den Wachstumsraten der Wind- und Solarindustrie der letzten Jahre und mit „Peak Oil“ voraus, werden Wind und Sonne bereits 2027 mehr Nutzenergie liefern als weltweit der gesamte Diesel-, Benzin-, Schweröl- und Kerosinverbrauch.
Denken wir noch etwas weiter bis zum Ende dieses Jahrzehntes. Dann sind die jährlichen Zuwächse so groß, dass in nur 3-5 Jahren tatsächlich die jährlich aus Erdöl bezogene Nutzenergie durch neue Wind- und Solaranlagen ersetzbar ist.
Natürlich ist das nur ein Gedankenexperiment. Heute wird nur ein Bruchteil des erneuerbar erzeugten Stromes für Mobilität verwendet. Und einfach nur Wind- und Solarstrom sind noch kein realer Ersatz der weltweiten Erdölinfrastruktur. Es zeigt aber sehr deutlich, warum die Ölindustrie wortwörtlich alles dafür tut, den Übergang zur Elektromobilität zu bremsen und auch mit harter Desinformation zu unterwandern. Ein Wettbewerber, der so günstig so viel Energieerzeugung aufbauen kann, ist eine sehr reale Existenzbedrohung. Und viele Firmen finden keinen Ausweg. BP scheint sich sogar wieder aufs Kerngeschäft konzentrieren zu wollen, Ähnliches hört man von Anderen. Die aktuellen Margen sind noch zu attraktiv, auch dank weltweitem Kampf gegen angemessene CO2-Preise und andere Klimaschutzinstrumente.
Das Gedankenexperiment erklärt zudem die beiden Gründe, warum in vielen Köpfen Sonne und Wind immer noch als „klein“ im Vergleich zu der seit Jahrzehnten allgegenwärtigen Ölnutzung sind: es wird auf der falschen Ebene verglichen (Primär- statt Nutzenergie). Und die Macht des exponentiellen Wachstums, in diesem Fall der Wind- und Solarindustrie, wird unterschätzt.
Zahlen: ourworldindata.org. Annahmen zur Berechnung: Primärenergieverbräuche aus Erdöl sind im Mittel mit 12% Umwandlungsverlust zu Endenergie (Benzin/Diesel etc.) und nochmals 65% Umwandlungsverlust zu Nutzenergie bewertet (gewichtete Antriebswirkungsgrade über alle Mobilitätssektoren). Zur Vergleichbarkeit ist die Primärenergie aus Wind & Sonne mit 5% Systemverlusten und 30% Umwandlungsverlust (Wirkungsgrad Elektroantrieb) bewertet.
Und hier noch zwei Tipps: wer das mit der Physik der Verbrennung oder auch des Klimawandels genauer verstehen will, lege ich den Podcast „Jetzt mal ganz in Ruhe“ von und mit Jens Schröder ans Herz. Gibt es hier:
Und mehr zu Hintergründen, Strukturen und konkrete Maßnahmen von Desinformation durch big oil wissen möchte, lese das Buch „Männer, die die Welt verbrennen“ von Christian Stoecker
Vorsicht, wenn jetzt jemand denkt oder sagen will, dass die Akkus besonders umweltschädlich sind.
——-
Vergleich von Akku und Benzin auf eine Gesamtlaufzeit von 150.000 km
Immer wieder ist zu lesen, dass die Akku bei einem Vollstromer doch so umweltschädlich seien.
Viele wird vielleicht erst jetzt gleich bewusst, wie umweltschädlich Vergaser oder Hybridfahrzeuge sind.
Hierzu eine detaillierte Beleuchtung zunächst einmal beim Elektrofahrzeug
Wie viel seltene Erde steckt im Elektrofahrzeug in den Akkus?
Das Akku des Audi Q8 55 e-tron besteht aus Lithium-Ionen-Zellen, die wichtige Rohstoffe wie Lithium, Nickel, Kobalt und Mangan enthalten.
Diese Rohstoffe sind entscheidend für die Energiedichte, Langlebigkeit und Stabilität des Akkus, tragen aber auch ethische und ökologische Herausforderungen mit sich:
Lithium:
Das Element sorgt für eine hohe Energiedichte und Ladefähigkeit der Batterie.
Der Abbau, vor allem in Südamerika, führt jedoch zu Umweltauswirkungen wie Wasserknappheit, da viel Wasser für die Extraktion benötigt wird.
Nickel:
Nickel erhöht die Energiedichte und verbessert die Leistung der Batterie.
Der Abbau ist energieintensiv und erzeugt giftige Rückstände, die oft in die Umwelt gelangen.
Kobalt: Kobalt stabilisiert die Batterie und erhöht die Sicherheit.
Der Abbau von Kobalt, vor allem im Kongo, steht unter starker Kritik aufgrund menschenrechtlicher Probleme wie Kinderarbeit und unsicheren Arbeitsbedingungen.
Mangan:
Mangan verbessert die Leistung und Effizienz.
Der Abbau ist vergleichsweise weniger problematisch, aber die Gewinnung und Verarbeitung können ebenfalls ökologische Folgen haben.
Viele Hersteller, darunter Audi, arbeiten daran, diese Materialien sparsamer einzusetzen oder Alternativen zu entwickeln, um die Abhängigkeit von problematischen Rohstoffen zu reduzieren.
Auch das Recycling von Batterien und die Wiederverwendung der Materialien spielen eine zunehmend wichtige Rolle, um die Umweltbelastungen zu verringern und Rohstoffkreisläufe zu schließen.
Die Recyclingquote beträgt inzwischen etwa 95 %.
Wieviel wiegt ein Akku bei einem Mittelklassewagen und einem Audi Q8
Das Gewicht einer 114 kWh Lithium-Ionen-Batterie hängt von der spezifischen Konstruktion und den verwendeten Materialien ab.
Im Allgemeinen liegt das Gewicht solcher Batterien für Elektroautos zwischen 6 und 7 kg pro kWh. Bei 114 kWh würde die Batterie daher etwa 680 bis 800 kg wiegen.
Wieviel seltene Erden sind in den Elektrofahrzeugen ist drin?
Die genaue Menge an Lithium, Nickel, Kobalt und Mangan in der Batterie des Audi Q8 55 e-tron wird von Audi nicht öffentlich spezifiziert. Allgemein enthalten Lithium-Ionen-Batterien pro Kilowattstunde (kWh) Kapazität etwa:
Lithium: 0,3 bis 0,8
Mangan: 0,1 bis 0,3 kg
Kobalt: 0,1 bis 0,3 kg
Mangan: 0,1 bis 0,3 kg
Bei einer Batteriekapazität von 114 kWh (brutto) im Audi Q8 55 e-tron ergibt sich somit eine geschätzte Gesamtmenge von:
Lithium: 34 bis 80 kg
Nickel: 91 bis 171 kg
Kobalt: 11 bis 30 kg
Mangan: 11,4 bis 34,2 kg
Sind Neodym oder Dysprosium im Audi Q8 -55 etron?
Nein. Diese Stoffe sind nicht enthalten.
Vergleich zum Verbrenner
Wie viel Benzin verbraucht ein Mittelklassewagen, wenn er 150.000 km gefahren ist?
Ein Mittelklassewagen verbraucht etwa 8 Liter pro 100 km.
Auf 150.000 km ergibt sich sein Verbrauch von 12.000 LiterBenzin und für den Ölwechsel etwa 60 bis 100 Liter Öl sowie der Austausch unterschiedlicher Bauteile, die ein Elektrofahrzeug nicht braucht.
Hierzu zählen:
– Verbrennungsmotor
– Zündkerzen
– Luftfilter
– Kühler
– Keilriemen
– Auspuff
– Katalysator
– Vergaser
– Einspritzanlage
– Benzintank
– Benzinleitung
– fast immer Getriebe
– Getriebeöl
Außerdem sind die Wartungsarbeiten beim Vollstromer um ca 30 bis 40 Prozent geringer (keine Zündkerzen, bestimmte andere Schmierstoffe etc),
Vollstromer brauchen meistens auch kein Getriebe und somit kein Getriebeöl.
Und nun kommen wir zunächst zu dem Benzin, das bei einem Mittelklassewagen verbraucht wird und wie hoch und welche Komponenten hier zum Einsatz kommen
Benzin, Diesel eFuel oder HVO sind ineffektive Treibstoffe
Zunächst grundsätzlich vorab: Kraftstoffe für Verbrennungsmaschinen sind letztendlich deshalb ineffizient, weil mit dem Kraftstoff Hitze entsteht und dann wieder durch spezielle Vorgänge die Wärme abgeleitet werden muss.
Diese Ableitung erhitzt auch die Umwelt.
Wenn 50 bis 70 Millionen fahrende Heizungen auf den Straßen unterwegs sind, erhitzt dies auch die Umwelt.
Oft ist die Effizienz bei vielleicht 30 Prozent, aber bezogen auf den Kraftstoff.
Bezogen auf den Energieaufwand ab der Suche des Erdöls wird die Effizienz vielleicht bei knapp 10 Prozent liegen.
Wie wird Benzin gewonnen und welche Stoffe werden eingesetzt?
Bei einer Effizienz von 40 Prozent bei 12.000 Benzin werden 30.000 Liter Rohöl benötigt.
Bei der Förderung und Verarbeitung von Rohöl entsteht tatsächlich eine erhebliche Menge an Abfall und Schadstoffen, die sowohl die Umwelt als auch die menschliche Gesundheit beeinflussen können. Hier sind die wichtigsten Abfälle und Giftstoffe, die typischerweise anfallen, und eine detaillierte Beschreibung der Restmengen:
1. Produktionswasser (Abwasser):
Menge: Pro Liter Rohöl entstehen etwa 3 bis 10 Liter Produktionswasser, was bei 30.000 Litern Rohöl rund 90.000 bis 300.000 Liter Abwasser ergibt.
• Inhalt: Enthält Salze, gelöste organische Stoffe, Schwermetalle (wie Blei, Quecksilber und Arsen), Kohlenwasserstoffe und Chemikalien (z. B. Korrosionsschutzmittel und Inhibitoren).
• Umweltauswirkungen: Diese Abwässer können bei unsachgemäßer Entsorgung Grundwasser und Oberflächengewässer kontaminieren und die lokale Umwelt schädigen.
2. Bohrschlamm:
• Menge: Bei der Förderung von 30.000 Litern Rohöl entstehen schätzungsweise 1.890 bis 2.835 Kilogramm Bohrschlamm, abhängig von der Tiefe und geologischen Bedingungen.
• Inhalt: Der Bohrschlamm enthält Schwermetalle wie Quecksilber, Blei und Kadmium, Ölrückstände sowie Additive und Chemikalien, die beim Bohren eingesetzt werden.
• Umweltauswirkungen: Bohrschlamm wird oft in Schlammgruben gelagert und kann bei Lecks Schwermetalle und Chemikalien in den Boden und ins Wasser freisetzen.
3. Begleitgase:
• Menge: Abhängig vom Fördergebiet und der Rohölqualität wird ein Teil der Begleitgase (Methan, Ethan und Propan) oft abgefackelt, insbesondere in Regionen ohne ausreichende Gas-Infrastruktur.
• Inhalt: Methan ist ein starkes Treibhausgas, während das Abfackeln zu CO₂ und anderen Schadstoffen wie Schwefeldioxid und Stickoxiden führt.
• Umweltauswirkungen: Methan trägt erheblich zum Treibhauseffekt bei, und das Abfackeln kann Luftverschmutzung und sauren Regen verursachen.
4. Kohlendioxidemissionen (CO₂):
• Menge: Bei der Förderung von 30.000 Litern Rohöl entstehen etwa 6.000 bis 9.000 Kilogramm CO₂ (bei einem Durchschnitt von 20-30 kg CO₂ pro Barrel Rohöl).
• Umweltauswirkungen: CO₂ ist ein Haupttreiber des Klimawandels und trägt zur globalen Erwärmung bei.
5. Verunreinigte Böden und Schlacke:
• Menge: Während des Betriebs kann es zu Leckagen und Verschüttungen kommen, die Böden verschmutzen. Die genaue Menge ist schwer zu quantifizieren und variiert stark nach Standort.
• Inhalt: Verschmutzte Böden enthalten Kohlenwasserstoffe, Schwermetalle und organische Verbindungen, die das Ökosystem langfristig schädigen können.
• Umweltauswirkungen: Diese Verunreinigungen können die lokale Fauna und Flora gefährden und sind nur schwer zu reinigen.
Zusammenfassung der Abfälle und Giftstoffe
• Abwasser: 90.000 bis 300.000 Liter, enthält Salze, Schwermetalle, Kohlenwasserstoffe.
• Bohrschlamm: 1.890 bis 2.835 Kilogramm, enthält Schwermetalle, Ölrückstände, Chemikalien.
• Begleitgase: Emissionen wie Methan, CO₂, Schwefeldioxid, Stickoxide.
• CO₂-Emissionen: 6.000 bis 9.000 Kilogramm.
• Verunreinigte Böden: Schwankend, abhängig von Standortbedingungen und Betriebspraktiken.
Diese Schadstoffe und Reststoffe stellen erhebliche Herausforderungen für den Umweltschutz dar und erfordern aufwändige Maßnahmen zur Abfallbehandlung und -entsorgung, um Umweltschäden zu minimieren.
Bei einer Laufleistung von 150.000 Kilometern und einem Benzinverbrauch von 12.000 Litern entsteht eine erhebliche Menge an CO₂ und weiteren Schadstoffen durch die Verbrennung des Kraftstoffs. Die Menge der Emissionen lässt sich wie folgt abschätzen:
1. CO₂-Emissionen
• Berechnung: Ein Liter Benzin produziert etwa 2,3 kg CO₂.
• Gesamtemissionen:
12.000 mal 2,3 = 27.600 CO₂
• CO₂ gesamt: 27.600 kg (oder 27,6 Tonnen).
2. Stickoxide (NOx)
• Durchschnittlich entstehen 1,2 bis 1,6 Gramm NOx pro Kilometer bei einem Benzinmotor.
• Gesamtemissionen:
150.000 mal 1,4 = 210.000 NOx oder 210 kg NOx
• NOx gesamt: 210 kg.
3. Kohlenmonoxid (CO)
• Benzinmotoren emittieren etwa 5 bis 20 Gramm CO pro Kilometer.
• Gesamtemissionen (angenommen 10 g CO/km):
150.000 mal 10 CO = 1.500.000 g CO = 1.500 kg CO}
• CO gesamt: 1.500 kg.
4. Kohlenwasserstoffe (HC)
• Emissionen: Im Durchschnitt etwa 0,5 bis 1,0 Gramm HC pro Kilometer.
• Gesamtemissionen:
150.000 mal 0,75 g HC/km= 112.500 g HC= 112,5 kg HC}
• HC gesamt: 112,5 kg.
Zusammenfassung der Gesamtemissionen über 150.000 km:
• CO₂: 27.600 kg (27,6 Tonnen)
• Stickoxide (NOx): 210 kg
• Kohlenmonoxid (CO): 1.500 kg
• Kohlenwasserstoffe (HC): 112,5 kg
Diese Emissionen umfassen nur die direkten Abgase des Fahrzeugs. Weitere Umweltbelastungen durch die Herstellung und den Transport des Benzins sowie durch Abrieb von Bremsen und Reifen sind darin nicht enthalten.
Vergleich von Umweltbelastungen zwischen Stromer und Verbrenner
Klarer Sieger ist hier der Vollstromer. Insbesondere, wenn man die Recyclingquote berücksichtigt.
——————
Unterschiede in der Garantie
Hersteller von Elektrofahrzeugen geben eine Garantie auf die Akkus, die mindestens sechs Jahre und 160000 km oder bis zu zehn Jahre und 200.000 km gilt.
Bei Verbrennerfahrzeuge ist mir kein Fahrzeug mit einer ähnlichen Garantie bekannt.
———
Thema Reichweite des Fahrzeuges.
Viele Mittelklassewagen schaffen heute schon mit einer Batterieladung etwa 300 km.
Der Audi Q8 55 e-tron hat eine Reichweite von 300 bis 400 km in der Praxis.
Dies dürfte im Durchschnitt auch ausreichend sein. Es gibt natürlich auch Kleinwagen, die nur 200 km Reichweite haben.
Prinzipiell wird jedoch die Reichweite in den nächsten Jahren bei den Mittelklassewagen erheblich auch zunehmen.
Wie viele Ladesäulen gibt es in Deutschland?
Jetzt könnte man natürlich sagen, dass es zu wenig Ladesäulen gibt. Das ist aber schon lange nicht mehr der Fall. Stand vom 1. September 2024 gab es in Deutschland insgesamt 145.857 öffentlich zugängliche Ladepunkte für Elektrofahrzeuge.
Und auch das Problem Wartezeit ist heute schon ein Problem der Vergangenheit.
Ich lade beispielsweise bei mir zu Hause an meiner eigenen Wollbox und muss nur noch auf längeren Reisen eine Ladung unterwegs vornehmen.
Insofern ist die Gesamtbeladezeit im Jahr viel geringer wie früher und ich muss nicht mehr an der Tankstelle zusätzliche Dinge zu teuren Preisen kaufen (Süßigkeiten und so weiter).
Beim Klimaschutz Tempo machen, statt stehen zu bleiben
Je vielfältiger die Lösungsansätze, desto effektiver der Schutz unseres Planeten: Mit unserem führenden Ökosystem gehen die Unternehmen der Schwarz Gruppe Klimaschutz ganzheitlich an.
Durch die Elektrifizierung der Logistik mit E-Lkw und den Ausbau der Ladeinfrastruktur reduzieren wir Emissionen im Verkehr. Auf unseren Flächen erzeugen wir Grünstrom mit Photovoltaikanlagen. Unsere über 4.000 Gebäude mit Nachhaltigkeitszertifikat schonen Ressourcen, sparen Energie und fördern Biodiversität.
Voraushandeln statt nur vorausdenken – die Unternehmen der Schwarz Gruppe.
Das finde ich prima. Was mir nur nicht gefällt, sind beim Kaufland so viele MüllerMilch-Produkte. Ich verzichte bewusst auf Müllerprodukte aufgrund von
der Nähe von Alois Müller zur AfD
Steuerung der Gewinne ins Ausland indem über Lizensunternehmen die Gewinne ins Ausland abgeführt werden
Erbschaftsteuerumgehungen
unser deutscher Staat – also unser Volk – ausbluten soll.
Das Volk kauft MüllerMilchProdukte und wird dann noch um die eigentlich reale Steuer beschissen.
Haben Sie auch zu Müller-Milch-Reis Alternative? Übrigens lade ich bei Ihnen dann, wenn ich mal nicht zu Hause lade! Ebenso empfehle ich Sie auch im Blog – Demokratie .de
Eine weitere Analyse von Carbon Brief ist mindestens genauso interessant, wie die am Automarkt in China. Die CO2-Emissionen in China sind im 2. Quartal zurückgegangen. Zwar „nur“ um ein Prozent, aber das Land hat der Analyse zufolge den Höhepunkt seiner Emissionen bereits letztes Jahr erreicht.
Ziel des Landes war es, den Wendepunkt 2030 zu erreichen. Es wurde auf 2025 vorgezogen. Und ist nun wohl schon 2023 erreicht worden. Das ist ein verdammt gutes Signal für die Welt: China baut seinen Dienstleistungssektor aus und somit weniger energieintensiv. Daher ist der Wendepunkt erreicht. Negativ ist allerdings die Entwicklung in Indien. Dort wird es noch dauern, bis der Höhepunkt der Emissionen erreicht ist. Momentan steigen sie deutlich – wegen Kohlekraft. Und das trotz massiver Anstrengungen in Sachen erneuerbare Energien.
Von schreckenserregend primitiven Energie-Narrativen – Das Update … Teil I (die Narrative)
Anfang des Jahres schrieb ich mehrmals zu primitiven Energie-Narrativen und zeigte in der Folge auch die jeweiligen Preisrückgänge verschiedener Energiearten (Gas, Strom …) auf:
Den einen oder anderen stupiden Kommentar mußte ich aushalten, aber es blieb vergleichsweise zivil, wenn man sich vor Augen hält, was andere engagierte Menschen (ich denke derzeit zuvorderst an Matthias Ecke in Dresden und wünsche ihm gute Besserung) ertragen müssen. Ich bewundere u.a. Bruno Burger, Lion Hirth, Prof. Dr.-Ing. Markus Koschlik, Tim Meyer … uvm., die fast täglich zur Aufklärung in Energiefragen beitragen.
In den letzten Jahrzehnten haben sich diese Narrative entwickelt:
Als ich 1985 Energie- und Verfahrenstechnik zu studieren begann, getrieben vom Wunsch Solarenergie und Biologische Abwasserreinigung voranzubringen, wurde regenerative Energie für eine Spielerei, eine Utopie von „Müslis“ gehalten. Die Pioniere z.B. bei der #DGS haben trotzdem daran gearbeitet; ich erinnere mich z.B. an meinen Chef als Werkstudent (bei #EnergieSystemTechnik) #RainerWüst oder an der #TUB an #RainerMorsch und #WolfgangNeef (ehem. TUB VP) vom #Energieseminar.
Ich habe lange nach einer langfristigen Entwicklung der Stromgestehungskosten regenerativer Energien gesucht. Das beste was ich gefunden habe, ist eine Studie von 2010:
(s.u.). In diese habe ich die letzten Daten des Fraunhofer-Institut für Solare Energiesysteme ISE händisch eingetragen und eine aktualisierte Kurve geschätzt:
ab den 2000ern sanken die Kosten immer weiter, das war nicht mehr zu übersehen, also lautete das Narrativ, Regenerative könnten aber nie wettbewerbsfähig mit AKW und Kohle werden
als sie das wurden, paßte man das Narrativ an: Sie könnten eine sinnvolle Ergänzung sein
Wirklich haarsträubend sind aber erst die neuesten Narrative, ob der konkurrenzlos günstigen Gestehungskosten von Solarstrom aus freien Anlagen – und ich rede hier von Deutschland, nicht von Spanien:
Die Kosten Regenerativer sind zu niedrig. Die Anbieter anderer Gestehungsarten müssen vor Regenerativen geschützt werden, weil sie mit deren Wettbewerbsfähigkeit nicht mithalten können … da zeichnen sich #Parallelen zu jahrzehntelangen und völlig unsinnigen #Steinkohlesubventionen ab
Damit die Kosten Regenerativer nicht so konkurrenzlos bleiben, sollen ihnen danach alle möglichen #Gemeinkostenarten vom Stromnetzausbau … bis zu den Kosten des Wirtschaftsministers (inkl. Bruder) Dr. Markus Söders, den Anlagenkosten der Phrasendreschmaschine von Dr. Christoph Ploß und die täglichen Porträtfotografenkosten #MarieChristineOstermanns zugerechnet werden
In Teil II geht es um eine ökonomische Würdigung dessen was hier passiert ist und weiter passiert … link folgt
Unglaublich, wie hetzerisch #Friedrich Merz jetzt gegen Windkrafträder ist.
Woran liegt dies? Ganz einfach, an Windkraftanlagen verdient #Blackrock nichts. Es lohnt sich nicht für BlackRock Es erinnert stark an die Hetze gegen den Entwurf des #GEG (Gebäudeenergiegesetz) und dem Treiben der Wähler zur Öl- und Gasheizung!
Dies endete erst 2023 nachdem #BlackRock bei Enpal einen 3-Stelligen Millionenbetrag investiert hatte. Und das Perfide von Merz war dann, das Merz „nicht verstehen konnte, warum in Deutschland so wenige Wärmepumpen einbauen…“ Merz ist und bleibt ein #BlackRock-Anhänger!
Und dann auch noch die Spende von Stefan #Quandt (#BMW) an die #CDU und die Aussage am nächsten Tag getroffene Aussage, dass die EU-Verbrennerregelung unbedingt zurückgenommen werden
Immer wieder ist zu lesen, dass die Akku bei einem Vollstromer doch so umweltschädlich sein soll.
Hierzu eine detaillierte Beleuchtung zunächst einmal beim ElektrofahrzeugundanschließendvonVerbrennerfahrzeugen
Wie viel seltene Erde steckt im Elektrofahrzeug in den Akkus?
Beispiel Audi Q8-55 e-tron
Die Batterie des Audi Q8 55 e-tron besteht aus Lithium-Ionen-Zellen, die wichtige Rohstoffe wie Lithium, Nickel, Kobalt und Mangan enthalten.
Diese Rohstoffe sind entscheidend für die Energiedichte, Langlebigkeit und Stabilität des Akkus, tragen aber auch ethische und ökologische Herausforderungen mit sich:
Lithium: Das Element sorgt für eine hohe Energiedichte und Ladefähigkeit der Batterie. Der Abbau, vor allem in Südamerika, führt jedoch zu Umweltauswirkungen wie Wasserknappheit, da viel Wasser für die Extraktion benötigt wird.
Nickel: Nickel erhöht die Energiedichte und verbessert die Leistung der Batterie. Der Abbau ist energieintensiv und erzeugt giftige Rückstände, die oft in die Umwelt gelangen.
Kobalt: Kobalt stabilisiert die Batterie und erhöht die Sicherheit. Der Abbau von Kobalt, vor allem im Kongo, steht unter starker Kritik aufgrund menschenrechtlicher Probleme wie Kinderarbeit und unsicheren Arbeitsbedingungen.
Mangan: Mangan verbessert die Leistung und Effizienz. Der Abbau ist vergleichsweise weniger problematisch, aber die Gewinnung und Verarbeitung können ebenfalls ökologische Folgen haben.
Viele Hersteller, darunter Audi, arbeiten daran, diese Materialien sparsamer einzusetzen oder Alternativen zu entwickeln, um die Abhängigkeit von problematischen Rohstoffen zu reduzieren. Auch das Recycling von Batterien und die Wiederverwendung der Materialien spielen eine zunehmend wichtige Rolle, um die Umweltbelastungen zu verringern und Rohstoffkreisläufe zu schließen.
Die Recyclingquote beträgt inzwischen etwa 95 %.
Wieviel wiegt ein Akku bei einem Mittelklassewagen und einem Audi Q8
Das Gewicht einer 114 kWh Lithium-Ionen-Batterie hängt von der spezifischen Konstruktion und den verwendeten Materialien ab. Im Allgemeinen liegt das Gewicht solcher Batterien für Elektroautos zwischen 6 und 7 kg pro kWh. Bei 114 kWh würde die Batterie daher etwa 680 bis 800 kg wiegen.
Wieviel seltene Erden sind in den Elektrofahrzeugen ist drin?
Die genaue Menge an Lithium, Nickel, Kobalt und Mangan in der Batterie des Audi Q8 55 e-tron wird von Audi nicht öffentlich spezifiziert. Allgemein enthalten Lithium-Ionen-Batterien pro Kilowattstunde (kWh) Kapazität etwa:
Lithium: 0,3 bis 0,8
Mangan: 0,1 bis 0,3 kg
Kobalt: 0,1 bis 0,3 kg
Mangan: 0,1 bis 0,3 kg
Bei einer Batteriekapazität von 114 kWh (brutto) im Audi Q8 55 e-tron ergibt sich somit eine geschätzte Gesamtmenge von:
Lithium: 34 bis 80 kg
Nickel: 91 bis 171 kg
Kobalt: 11 bis 30 kg
Mangan: 11,4 bis 34,2 kg
Sind Neodym oder Dysprosium im Audi Q8 -55 etron?
Nein. Diese Stoffe sind nicht enthalten.
——-
Wie viel Benzin verbraucht ein Mittelklassewagen, wenn er 150.000 km gefahren ist?
Ein Mittelklassewagen verbraucht etwa 8 Liter pro 100 km.
Auf 150.000 km ergibt sich sein Verbrauch von 12.000 Liter Benzin und für den Ölwechsel etwa 60 bis 100 Liter Öl
sowie der Austausch unterschiedlicher Bauteile, die ein Elektrofahrzeug nicht braucht.
Wie viel Liter Erdöl müssen für 12.000 l Benzin gefördert werden?
Für die Förderung von 12.000 l Benzin ist die Förderung von 30.000 Liter Erdöl notwendig.
Welche Stoffe werden bei der Förderung von 30.000 Liter Erdöl gefördert oder entstehen bei der Förderung?
Die nachfolgen Angaben sind Durchschnittswerte für 12.000 Liter Benzingewinnung und variieren je nach Abbaugebiet.
Abwasser: 90.000 bis 300.000 Liter, enthält Salze, Schwermetalle, Kohlenwasserstoffe.
Bohrschlamm: 1.890 bis 2.835 Kilogramm, enthält Schwermetalle, Ölrückstände, Chemikalien.
Begleitgase: Emissionen wie Methan, CO₂, Schwefeldioxid, Stickoxide.
CO₂-Emissionen: 6.000 bis 9.000 Kilogramm.
Verunreinigte Böden: Schwankend, abhängig von Standortbedingungen und Betriebspraktiken.
Wie viel Giftstoffe entstehen bei einem Fahrzeug, dass auf 150.000 km etwa 12.000 Liter Benzin verbraucht?
CO₂: 27.600 kg (27,6 Tonnen)
Stickoxide (NOx): 210 kg
Kohlenmonoxid (CO): 1.500 kg
Kohlenwasserstoffe (HC): 112,5 kg
Diese Emissionen umfassen nur die direkten Abgase des Fahrzeugs. Weitere Umweltbelastungen durch die Herstellung und den Transport des Benzin sind noch nicht enthalten.
Ebenso ist noch nicht enthalten, dass neben den günstigeren Werkstattkosten auch noch innerhalb der 150.000 km folgende Teile höchstwahrscheinlich ersetzt oder repariert werden müssen
Hierzu zählen:
– Verbrennungsmotor
– Zündkerzen
– Luftfilter
– Kühler
– Keilriemen
– Auspuff
– Katalysator
– Vergaser
– Einspritzanlage
– Benzintank
– Benzinleitung
– fast immer Getriebe
– Getriebeöl
Außerdem sind die Wartungsarbeiten geringer und ca 30 bis 40 Prozent geringer (keine Zündkerzen, bestimmte andere Schmierstoffe etc), braucht in der Regel kein Getriebe und somit kein Getriebeöl.
Garantie:
Hersteller von Elektrofahrzeugen geben eine Garantie auf die Akkus, die mindestens sechs Jahre und 160000 km oder bis zu zehn Jahre und 200.000 km gilt.
Eine annähernd gleiche Garantie gibt es bei Verbrenner Fahrzeugen nicht.
——-
Thema C O 2
Die Gesamtmenge an freigesetzten CO2 Beträgt für die Förderung, den Transport und einer Fahrleistung von 150.000 km bei einem Mittelklassewagen etwa 12.000 kg C O 2.
———
Thema Reichweite des Fahrzeuges.
Viele Mittelklassewagen schaffen heute schon mit einer Batterieladung etwa 300 km.
Der Audi Q8 55 e-tron hat eine Reichweite von 300 bis 400 km in der Praxis.
Dies dürfte im Durchschnitt auch ausreichend sein. Es gibt natürlich auch Kleinwagen, die nur 200 km Reichweite haben.
Prinzipiell wird jedoch die Reichweite in den nächsten Jahren bei den Mittelklassewagen erheblich auch zunehmen.
Jetzt könnte man natürlich sagen, dass es zu wenig Ladesäulen gibt. Das ist aber schon lange nicht mehr der Fall. Stand vom 1. September 2024 gab es in Deutschland insgesamt 145.857 öffentlich zugängliche Ladepunkte für Elektrofahrzeuge.
Und auch das Problem Wartezeit ist heute schon ein Problem der Vergangenheit.
Ich danke beispielsweise bei mir zu Hause an meiner eigenen Wollbox und muss nur noch auf längeren Reisen eine Ladung unterwegs vornehmen.
Insofern ist die Gesamtbeladezeit im Jahr viel geringer wie früher und ich muss nicht mehr an der Tankstelle zusätzliche Dinge zu teuren Preisen kaufen (Süßigkeiten und so weiter).
Die Heimspeicher werden immer besser und immer billiger. Ich kannte diese Marke ledvance überhaupt nicht bzw. wusste nicht, dass sie jetzt Speicher bauen.
Wiedereinstieg Beispiel dafür, dass leistungsfähige Speicher immer erschwinglicher werden. Der kWh Preis liegt bei ca. 300€ und da ist der Wechselrichter schon dabei.
Jetzt müssen die Speicher nur noch intelligent und netzdienlich arbeiten. Ansonsten sind sie für die Energiewende kontraproduktiv.
20 kWh inklusive Wechselrichter mit 10 kW Be- und Endladeleistung inklusive Hybrid-Wechselrichter für 7000€ sind eine Ansage an alle Konkurrenten und die deutschen Hersteller.
Ich war erst sehr skeptisch und verwundert, weil ich von der Installation anderer Speicher ausgegangen bin. Ich habe ja lange für die FENECON gearbeitet .
Aber es gibt auch andere gute Lösungen. Hier wurden ein Speicher, eine Wärmepumpe und ein EMS von energielenker Gruppe installiert.
Die Firma LEDVANCE vormals OSRAM hat hier ein Paket in den Markt gebracht, worüber wir bei YouTube noch ein langes Video bringen werden. Bei TikTok sind wir nach drei Tagen schon bei zigtausenden Aufrufen.
Danke an Frank Schmalowsky, dass wir uns den Speicher anschauen konnten und er mir erklärt hat, warum es am Ende kein FENECON Speicher wurde.
Ein Video über das umfangreiche EMS kommt natürlich auch noch bei YouTube und eines über die Wärmepumpe und wann sich das für ihn auszahlt.