Die Varianten bei Kernkraftwerken

Bei der Atomkraft gibt es unterschiedliche Ansätze, die sich allerdings alle als zu kostenintensiv oder zu utopisch erwiesen haben.

Bisherige kommerzielle Atomkraftwerke:

In einem Kernkraftwerk entsteht durch kontrollierte Kernspaltung im Reaktorkern Wärme. Mit dieser Wärme wird Dampf erzeugt. Dieser Dampf wiederum treibt eine Turbine an, an die ein Generator angeschlossen ist, der schließlich elektrischen Strom erzeugt.

Woher kommt das Uran?

Niger, Namibia, Russland, Usbekistan, China und die USA bauen grössere Mengen Uran ab. 

Aus Minen gefördertes Uran deckte im Jahr 2017 gut 90 Prozent des weltweiten Bedarfs von rund 60’000 Tonnen. Der Rest stammte aus Lagerbeständen oder aus der Abrüstung. Deshalb können bzw. Konnten Atommächte auch günstiger Atomstrom produzieren.

Wie viel kostete Uran?

Die Kosten für ein Kilo- gramm Uran liegen bei etwa 80 USD pro Kilogramm. Im Vergleich dazu kostet die Förderung von Kohle 80 USD pro Tonne [8]. Aus einem Kilogramm Uran kann im Atomkraftwerk eine Ener- gie von 36-56 MWh erreicht werden.

Für ein AKW mit einer Leistung von 1000 Megawatt pro Jahr werden 160 bis 175 Tonnen Uran benötigt, bei einer Konzentration von 0,2 Prozent sind es insgesamt also über 80.000 Tonnen Gestein, die bewegt und ausgebeutet werden müssen.

Der Abfall

Der meiste radioaktive Abfall entsteht bei der Kernspaltung, wenn in einem Kernreaktor Uran-235 mit Neutronen beschossen wird. Treffen die Neutronen auf andere Uran-Isotope, entstehen hochradioaktive Atome – vor allem Plutonium, Neptunium, Americium und Curium – die in den Brennstäben verbleiben.

Der deutsche Atommüll wird zunächst in eine Wiederaufarbeitungsanlage gebracht. Auf dem Weg dorthin und zurück werden die Brennstäbe in besonders sicheren Behältern transportiert, den Castoren. 

In der Anlage wird aus dem Abfall kleine Mengen Plutonium und Uran zurückgewonnen, die weiterverwendet werden können.

Die Abfälle lagern zurzeit in oberirdischen Zwischenlagern in ganz Deutschland. 

Hinzu kommen noch weitere radioaktive Abfälle, die etwa beim Abriss der Atomkraftwerke entstehen oder die Hinterlassenschaften des Uranabbaus, auf oberirdischen Halden lagern.

Wie lange braucht Atommüll bis er unschädlich ist?

Bis die radioaktive Strahlung sich halbiert hat, dauert es 24.000 Jahre.

Nach 200 000 Jahren ist die Radioaktivität auf das Niveau von Natururan abgesunken. 

Die radioaktiven Stoffe dürfen aber auch nach diesem Zeitraum nicht in grösseren Mengen in Nahrung oder Atemwege gelangen – ebenso wenig wie chemische Giftstoffe wie Blei oder Quecksilber.

Die Idee der Mini-Kernkraftwerke

Der Ausdruck „Small Modular Reactor“ kann aus dem Englischen mit „Kleiner modularer Reaktor“ ins Deutsche übersetzt werden. Geläufiger sind sie aber als Mini-Atomkraftwerke bekannt.
Erste Ideen zu Small Modular Reactors (SMR) gab es bereits vor Jahrzehnten. Dennoch handelt es sich bei den meisten Mini-Atomkraftwerken bislang um Entwürfe in Testphasen. Dementsprechend gibt’s auch bis heute keine international einheitliche Bestimmung für den Begriff.
Die Konzepte von SMR sind sehr verschieden. Bei vielen handelt es sich um kleine Versionen bisheriger Atomkraftwerke.

Erste Ideen zur Entwicklung von SMR gab es bereits in den 50er-Jahren bei Versuchen, Atomkraft als Antrieb für militärische U-Boote einzusetzen. 

Bis zum heutigen Tage ist diese Idee nicht über das Versuchsstadium hinaus entwickelt worden.

Mini-Atomkraftwerke sind zu teuer 

Inzwischen gibt es Firmen, die sich von dieser Idee auch aus Kostengründen verabschiedet haben, Nuscale Power Corp. ist deshalb auch von rund 15 USD im Oktober 2022 auf 2,06 USD abgestürzt.

Weitere Infos —> https://blog.forum-55plus.de/index.php/2023/11/09/auch-kleine-nukleare-atomkraftwerk-smr-geht-der-gar-aus/

Atomkraftwerke und Atommüll über Dual-Fluid-Reaktoren entsorgen

Man sucht die eierlegende Wollmilchsau

Hierüber haben wir bereits einen Artikel verfasst.

Link —> https://blog.forum-55plus.de/index.php/2023/11/03/atomkraftwerke-und-atommuell-ueber-dual-fluid-reaktoren-entsorgen/

Kurzfassung: Atommüll aus anderen Atomkraftwerken soll in Dual-Fluid-Kraftwerken nochmals genutzt werden.

Allerdings kann nur ein sehr kleiner Teil davon verwendet werden. 

Der in Dual-Fluid-Kraftwerken genutzte Atommüll wird später – so die THEORIE – nicht 200.000 Jahre strahlen. Allerdings muss dieser Atommüll mindestens 300 Jahre gekühlt und radioaktiv geschützt aufbewahrt werden. Innerhalb dieser 300 Jahre ist dieser Restmüll um ein Vielfaches höher radioaktiv.

Eine Versuchsanlage soll in Ruanda gebaut werden und ca. 2030 sind mit ersten Forschungsergebnissen gerechnet werden. 

Die Versuchsanlage kostet etwa aus heutiger Sicht 3 Mrd. USD 

Auch bei dieser Art von Atomkraft sind die Kosten – insbesondere die Endlagerung – extrem hoch.

Eines steht jedoch aus meiner Sicht heute schon fest:

Der Rückzug aus der Atomkraft wird früher oder später kommen und insbesondere für Investmentgesellschaften exterm kostspielig. 

Dies ist auch der Grund, warum gerade Investmentgesellschaften, wie beispielsweise #KKR oder #BlackRock den Ausstieg aus der Kernkraft sowie aus der fossilen Energie hinauszögern wollen.Werner Hoffmann

Werner Hoffmann

Batteriespeicher wachsen jetzt endlich überproportional

Beim roll-out stationärer Batteriespeicher in unserem Stromsystem zeigt sich weiter die Kraft exponentiellen Wachstums: Ende Q3 dieses Jahres waren 7,1 GW Leistung installiert, das entspricht bereits ca. 70% der Leistung der über Jahrzehnte aufgebauten Pumpspeicher. Im nächsten Jahr werden Batteriespeicher deren Leistung übertreffen.

Von

Und die Speicherkapazitäten? Ende Q3/2023 betrug diese rund 10,5 GWh bei den Batteriespeichern. Die Pumpspeicher haben ca. 40 GWh Kapazität. Dieser Meilenstein wird bei aktuellen Wachstumsraten stationärer Batteriespeicher in grob drei Jahren erreicht.

Wichtig: der Markt hält weiter mit der deutlich erhöhten Dynamik des Ausbaus der Photovoltaik mit. Betrug vor zwei Jahren das Verhältnis von Speicherzubau zu Solarzubau noch ca. 250 MWh Speicher je GW neuer Solarleistung beträgt es im Jahr 2023 bereits 400 MWh / GW – obwohl sich die PV-Installationen nahezu verdoppelt haben. Der Speichermarkt wächst also noch schneller als der PV-Markt. Aktuell liegt der Schwerpunkt immer noch bei Kleinspeichern. Doch das Gewerbesegment wächst ebenfalls und immer mehr große Projektentwickler kündigen jedoch an, alle (!) zukünftigen PV-Projekte mit Speichern zu entwickeln.

Dennoch bestehen Handlungsbedarf: es müssen Hindernisse für neue Geschäftsmodelle auf Basis von Batteriespeichern sowie für Großspeicher ausgeräumt und mehr Anreize geschaffen werden, Speicher system- und netzdienlich zu betreiben. Und natürlich müssen mobile Speicher angebunden werden (vehicle2grid).

Kurzum: für die Kurzfristspeicherung und damit für >80% der Speicheraufgabe in einem 100% erneuerbaren Energiesystems ist die Lösung nicht nur absehbar, sie ist unterwegs. Weitere Kostensenkungen und Skalierung auch mit alternativen Materialien kann die Industrie leisten. Die notwendigen regulatorischen Anpassungen sind lösbare Aufgaben.

——-> NEWS ZU Stromspeicher / Energiespeicher

Stromspeicher heute und Ausblick – Kohlekraftwerk bald überflüssig —>
Solarenergie und Windkraft mit Speicher nutzen —-> #Neue #Speichertechnologien machen es möglich, den Strom zu speichern. Die neuesten Möglichkeit ist —-> #Beton!!

https://blog.forum-55plus.de/index.php/2023/11/05/stromspeicher-heute-und-ausblick/

energiewende #innovation

Stromspeicher – Problem bald gelöst

Sollte sich diese Möglichkeit demnächst umsetzen lassen, gibt es kein Problem mehr mit Stromspeicher.

Auch das Thema Atomkraftwerke bzw. Kohlekraftwerke und Gaskraftwerke für die Deckung der sogenannten Grundlast wäre dann vom Tisch.

Warum bisher bestimmte fossile Grundlastwerke vorhanden sein müssen, ist einfach.

Wind- und Solarkraftwerke können dann Strom produzieren, wenn Wind weht oder die Sonne scheint.

Nun gibt es ggf. einzelne Stunden oder auch Tage, an denen die Stromproduktion durch diese Energiefirmen nicht reichen. Biogasanlagen können auch nur ca. 5-7 % Strom liefern.

Und wenn zu viel Wind weht, müssen Windkraftanlagen teilweise abgeschaltet werden, weil die derzeitigen Energiespeicher zu gering sind.

Durch das europäische Stromnetz ist es heute auch möglich, produzierten Strom von Dänemark nach Deutschland zu exportieren. Das war im Übrigen im Mai bis Juli der Fall. Der Strom konnte in Dänemark günstiger eingekauft werden, als er in einem deutschen Kohlekraftwerk hätte produziert werden können.

Trotzdem sind heute noch übergangsweise Kohlekraftwerke für die Deckung der Grundlast notwendig.

Hätte man die drei Kernkraftwerke letztes Jahr am Netz lassen wollen, wäre dies nach Aussage der Betreiber überhaupt nicht möglich gewesen. Deutsche Uranbrennstäbe haben eine andere Form und müssten speziell durch Russland wieder hergestellt werden. Vorlaufzeit ca. 1 Jahr bis Lieferung.

Auch das Personal hätte neu ausgebildet werden müssen und Abfindungsverträge müssten teuer rückgängig gemacht werden. Von der Personalsuche über Ausbildung bis zum Tageseinsatz wären ca 4 Jahre notwendig.

Insofern ist die Idee von Kernkraftwerken beerdigt. Und dies wurde 2011 beschlossen.

Was jetzt neu ist.

Durch eine neue Speichertechnik kann das Problem der Stromzwischenspeicherung gelöst werden

Energieunternehmen und kommunale Versorger sowie Unternehmen, die an der Grundlastversorgung Kasse machen, werden davon jedoch wenig begeistert sein.

Ersatz für Lithium-Akkus?

Forscher entwickeln Stromspeicher aus Beton

Dies stand heute in n-tv:

„Beton als Energiespeicher? Forscher aus den USA verwandeln gewöhnliches Baumaterial in einen leistungsfähigen Superkondensator. Häuser könnten in ihren Fundamenten auf diese Weise künftig Strom speichern. Und das Material hat noch einen weiteren Vorteil.

Aus den einfachen Komponenten Zement, Wasser und Ruß haben US-Wissenschaftler einen Stromspeicher entwickelt. In das Fundament eines Hauses eingelassen, könnten 45 Kubikmeter des Materials rund zehn Kilowattstunden speichern, was etwa dem durchschnittlichen Tagesverbrauch eines Haushalts in den USA entspricht. Auch den Einbau in Straßen, der das Laden von Elektrofahrzeugen während des Fahrens ermöglichen würde, kann sich die Gruppe um Franz-Josef Ulm und Admir Masic vom Massachusetts Institute of Technology (MIT) in Cambridge vorstellen.

„Der erfolgreiche, groß angelegte Übergang von einer auf fossilen Brennstoffen basierenden Wirtschaft zu einer auf erneuerbaren Energien basierenden Wirtschaft hängt von der weit verbreiteten Verfügbarkeit von Energiespeicherlösungen ab“, schreiben die Autoren in den „Proceedings“ der US-amerikanischen Nationalen Akademie der Wissenschaften („PNAS“). Denn Solar- oder Windstrom wird oft zu anderen Zeiten erzeugt als er verbraucht wird – deshalb muss er zwischengespeichert werden.

Ersatz für knappes Lithium gesucht

Allerdings sind aktuelle Batterien auf knappe Bestandteile wie etwa Lithium angewiesen. Um elektrischen Strom in größerem Umfang zu speichern, müssten gut verfügbare Materialien für Energiespeicher verwendet werden, betonen die Wissenschaftler.

Die Speicherung elektrischer Energie in Beton wird seit einigen Jahren erforscht. Ulm, Masic und Kollegen fanden nun einen Weg, aus Zement, Wasser und Ruß recht einfach einen Superkondensator herzustellen. Grundsätzlich sind in einem Kondensator zwei stromleitende Elektroden durch ein nicht leitendes Material getrennt. Im geladenen Zustand ziehen sich die negativen Ladungsträger in der einen Elektrode und die positiven Ladungsträger in der anderen Elektrode an, sie können wegen des Nichtleiters aber nicht zusammenkommen. Dieser Aufbau ermöglicht eine sehr lange Speicherung elektrischer Energie.

Ruß ordnet sich zu Nano-Drähten

Die Forscher stellten zunächst eine Mischung aus Portlandzement und Ruß her, wobei der Ruß sehr porös war und Strukturen im Bereich von Nanometern, also Millionstel Millimetern, aufwies. Mit viel Wasser angerührt, entstand ein ebenfalls poröses Material, in dem sich der wasserabweisende Ruß selbstständig in leitfähigen Nanometerdrähten anordnet. Die Hohlräume des porösen Materials wurden mit einem Elektrolyten mit Kaliumchlorid gesättigt, der Ladungsträger zur Verfügung stellt. Die große Oberfläche des porösen Rußes führt zu einer hohen Speicherkapazität.

Die Forscher betonen, dass die Superkondensatoren aus dem neuen Material in verschiedenen Größenordnungen gebaut werden können. „Man kann von ein-Millimeter-dicken Elektroden auf ein-Meter-dicke Elektroden umsteigen und auf diese Weise die Energiespeicherkapazität skalieren, von der Beleuchtung einer LED für ein paar Sekunden bis hin zur Stromversorgung eines ganzen Hauses“, wird Ulm in einer Mitteilung des MIT zitiert.

Auch als Heizsystem einsetzbar

Die Wissenschaftler stellten fest, dass sich die Kapazität des Energiespeichers steigern lässt, wenn man eine geringere Festigkeit in Kauf nimmt. Das Material ist dann jedoch nicht für Fundamente oder Straßen geeignet. Neben der Fähigkeit zum Speichern von Strom könne dieselbe Art von Betonmischung auch als Heizsystem verwendet werden. Dazu müsse man Strom an den kohlenstoffhaltigen Beton anlegen, erklären die Forscher. „Es ist also wirklich ein multifunktionales Material“, sagt Ulm.

Ein Nebeneffekt sei, dass die neuen Superkondensatoren den großen ökologischen Fußabdruck der Zementherstellung teilweise ausgleichen könnten, schreiben die Studienautoren. Die Zementproduktion ist derzeit verantwortlich für etwa acht Prozent des weltweiten Ausstoßes des Treibhausgases Kohlendioxid (CO2).

Artikel von n-tv —> https://www.n-tv.de/wissen/Forscher-entwickeln-Stromspeicher-aus-Beton-article24296345.htmlhttps://www.n-tv.de/wissen/Forscher-entwickeln-Stromspeicher-aus-Beton-article24296345.html