Ein Beitrag von
Zwischenbericht
Seit Juni 2024
• Produziert durch Photovoltaik: 1,06 MWh
• Davon ins Netz abgegeben: 715,2 kWh
• In Audi geladen: 344,9 kWh
• Netzentgelt-Rückerstattung: 8,5 Cent x 715,2 kWh = 60,79 €
Verbrauch Audi über Wallbox
• Von Photovoltaik: 344,9 kWh
• Vom Stromnetz: 785 kWh
• Kosten: 27 Cent x 785 kWh = 211,95 €
• Abzüglich Vergütung: -60,79 €
• Zusätzlich extern: 154 €
• Gesamtkosten: 305,16 €
Externes Laden: Bei Fahrten über 300 km.
Gefahrene km: 5.176 km
Vergleich Benzinkosten
• Verbrauch: 9 Liter / 100 km
• Berechnung: 5.176 x 9 / 100 = 465 Liter
• Kosten: 465 x 1,7 € = 791,93 €
Kostendifferenz
• Benziner: 791,93 €
• Stromer: 305,16 €
• Ersparnis: 486,77 €
Hochrechnung auf 1 Jahr
• 5 Monate: 486,77 €
• 1 Jahr: 1.168,24 €
• Zusätzliche Einsparungen:
• 40 % geringere Inspektionskosten
• Kein Öl- oder Ölfilterwechsel
• Geschätzte Wartungskostenersparnis: 350 €
Gesamtersparnis im Jahr: 1.518,24 €
Langzeitkosten Verbrennungsmotor (bis 150.000 km in 10 Jahren):
• Zündkerzenwechsel, Luftfilter, Ölfilter
• Einspritzanlage, Vergaser
• Benzinleitung, Benzintank
• Keilriemen, Katalysator
• Auspuffanlage inkl. Krümmer
• Kupplung, Getriebe, Motordichtung, Zahnriemen erneuern
——
Vorsicht, wenn jetzt jemand denkt oder sagen will, dass die Akkus besonders umweltschädlich sind.
——-
Vergleich von Akku und Benzin auf eine Gesamtlaufzeit von 150.000 km
Immer wieder ist zu lesen, dass die Akku bei einem Vollstromer doch so umweltschädlich seien.
Viele wird vielleicht erst jetzt gleich bewusst, wie umweltschädlich Vergaser oder Hybridfahrzeuge sind.
Hierzu eine detaillierte Beleuchtung zunächst einmal beim Elektrofahrzeug
Wie viel seltene Erde steckt im Elektrofahrzeug in den Akkus?
Das Akku des Audi Q8 55 e-tron besteht aus Lithium-Ionen-Zellen, die wichtige Rohstoffe wie Lithium, Nickel, Kobalt und Mangan enthalten.
Diese Rohstoffe sind entscheidend für die Energiedichte, Langlebigkeit und Stabilität des Akkus, tragen aber auch ethische und ökologische Herausforderungen mit sich:
Lithium:
Das Element sorgt für eine hohe Energiedichte und Ladefähigkeit der Batterie.
Der Abbau, vor allem in Südamerika, führt jedoch zu Umweltauswirkungen wie Wasserknappheit, da viel Wasser für die Extraktion benötigt wird.
Nickel:
Nickel erhöht die Energiedichte und verbessert die Leistung der Batterie.
Der Abbau ist energieintensiv und erzeugt giftige Rückstände, die oft in die Umwelt gelangen.
Kobalt: Kobalt stabilisiert die Batterie und erhöht die Sicherheit.
Der Abbau von Kobalt, vor allem im Kongo, steht unter starker Kritik aufgrund menschenrechtlicher Probleme wie Kinderarbeit und unsicheren Arbeitsbedingungen.
Mangan:
Mangan verbessert die Leistung und Effizienz.
Der Abbau ist vergleichsweise weniger problematisch, aber die Gewinnung und Verarbeitung können ebenfalls ökologische Folgen haben.
Viele Hersteller, darunter Audi, arbeiten daran, diese Materialien sparsamer einzusetzen oder Alternativen zu entwickeln, um die Abhängigkeit von problematischen Rohstoffen zu reduzieren.
Auch das Recycling von Batterien und die Wiederverwendung der Materialien spielen eine zunehmend wichtige Rolle, um die Umweltbelastungen zu verringern und Rohstoffkreisläufe zu schließen.
Die Recyclingquote beträgt inzwischen etwa 95 %.
Wieviel wiegt ein Akku bei einem Mittelklassewagen und einem Audi Q8
Das Gewicht einer 114 kWh Lithium-Ionen-Batterie hängt von der spezifischen Konstruktion und den verwendeten Materialien ab.
Im Allgemeinen liegt das Gewicht solcher Batterien für Elektroautos zwischen 6 und 7 kg pro kWh. Bei 114 kWh würde die Batterie daher etwa 680 bis 800 kg wiegen.
Wieviel seltene Erden sind in den Elektrofahrzeugen ist drin?
Die genaue Menge an Lithium, Nickel, Kobalt und Mangan in der Batterie des Audi Q8 55 e-tron wird von Audi nicht öffentlich spezifiziert. Allgemein enthalten Lithium-Ionen-Batterien pro Kilowattstunde (kWh) Kapazität etwa:
Lithium: 0,3 bis 0,8
Mangan: 0,1 bis 0,3 kg
Kobalt: 0,1 bis 0,3 kg
Mangan: 0,1 bis 0,3 kg
Bei einer Batteriekapazität von 114 kWh (brutto) im Audi Q8 55 e-tron ergibt sich somit eine geschätzte Gesamtmenge von:
Lithium: 34 bis 80 kg
Nickel: 91 bis 171 kg
Kobalt: 11 bis 30 kg
Mangan: 11,4 bis 34,2 kg
Sind Neodym oder Dysprosium im Audi Q8 -55 etron?
Nein. Diese Stoffe sind nicht enthalten.
Vergleich zum Verbrenner
Wie viel Benzin verbraucht ein Mittelklassewagen, wenn er 150.000 km gefahren ist?
Ein Mittelklassewagen verbraucht etwa 8 Liter pro 100 km.
Auf 150.000 km ergibt sich sein Verbrauch von 12.000 Liter Benzin und für den Ölwechsel etwa 60 bis 100 Liter Öl sowie der Austausch unterschiedlicher Bauteile, die ein Elektrofahrzeug nicht braucht.
Hierzu zählen:
– Verbrennungsmotor
– Zündkerzen
– Luftfilter
– Kühler
– Keilriemen
– Auspuff
– Katalysator
– Vergaser
– Einspritzanlage
– Benzintank
– Benzinleitung
– fast immer Getriebe
– Getriebeöl
Außerdem sind die Wartungsarbeiten beim Vollstromer um ca 30 bis 40 Prozent geringer (keine Zündkerzen, bestimmte andere Schmierstoffe etc),
Vollstromer brauchen meistens auch kein Getriebe und somit kein Getriebeöl.
Und nun kommen wir zunächst zu dem Benzin, das bei einem Mittelklassewagen verbraucht wird und wie hoch und welche Komponenten hier zum Einsatz kommen
Benzin, Diesel eFuel oder HVO sind ineffektive Treibstoffe
Zunächst grundsätzlich vorab: Kraftstoffe für Verbrennungsmaschinen sind letztendlich deshalb ineffizient, weil mit dem Kraftstoff Hitze entsteht und dann wieder durch spezielle Vorgänge die Wärme abgeleitet werden muss.
Diese Ableitung erhitzt auch die Umwelt.
Wenn 50 bis 70 Millionen fahrende Heizungen auf den Straßen unterwegs sind, erhitzt dies auch die Umwelt.
Oft ist die Effizienz bei vielleicht 30 Prozent, aber bezogen auf den Kraftstoff.
Bezogen auf den Energieaufwand ab der Suche des Erdöls wird die Effizienz vielleicht bei knapp 10 Prozent liegen.
Wie wird Benzin gewonnen und welche Stoffe werden eingesetzt?
Bei einer Effizienz von 40 Prozent bei 12.000 Benzin werden 30.000 Liter Rohöl benötigt.
Bei der Förderung und Verarbeitung von Rohöl entsteht tatsächlich eine erhebliche Menge an Abfall und Schadstoffen, die sowohl die Umwelt als auch die menschliche Gesundheit beeinflussen können. Hier sind die wichtigsten Abfälle und Giftstoffe, die typischerweise anfallen, und eine detaillierte Beschreibung der Restmengen:
1. Produktionswasser (Abwasser):
Menge: Pro Liter Rohöl entstehen etwa 3 bis 10 Liter Produktionswasser, was bei 30.000 Litern Rohöl rund 90.000 bis 300.000 Liter Abwasser ergibt.
• Inhalt: Enthält Salze, gelöste organische Stoffe, Schwermetalle (wie Blei, Quecksilber und Arsen), Kohlenwasserstoffe und Chemikalien (z. B. Korrosionsschutzmittel und Inhibitoren).
• Umweltauswirkungen: Diese Abwässer können bei unsachgemäßer Entsorgung Grundwasser und Oberflächengewässer kontaminieren und die lokale Umwelt schädigen.
2. Bohrschlamm:
• Menge: Bei der Förderung von 30.000 Litern Rohöl entstehen schätzungsweise 1.890 bis 2.835 Kilogramm Bohrschlamm, abhängig von der Tiefe und geologischen Bedingungen.
• Inhalt: Der Bohrschlamm enthält Schwermetalle wie Quecksilber, Blei und Kadmium, Ölrückstände sowie Additive und Chemikalien, die beim Bohren eingesetzt werden.
• Umweltauswirkungen: Bohrschlamm wird oft in Schlammgruben gelagert und kann bei Lecks Schwermetalle und Chemikalien in den Boden und ins Wasser freisetzen.
3. Begleitgase:
• Menge: Abhängig vom Fördergebiet und der Rohölqualität wird ein Teil der Begleitgase (Methan, Ethan und Propan) oft abgefackelt, insbesondere in Regionen ohne ausreichende Gas-Infrastruktur.
• Inhalt: Methan ist ein starkes Treibhausgas, während das Abfackeln zu CO₂ und anderen Schadstoffen wie Schwefeldioxid und Stickoxiden führt.
• Umweltauswirkungen: Methan trägt erheblich zum Treibhauseffekt bei, und das Abfackeln kann Luftverschmutzung und sauren Regen verursachen.
4. Kohlendioxidemissionen (CO₂):
• Menge: Bei der Förderung von 30.000 Litern Rohöl entstehen etwa 6.000 bis 9.000 Kilogramm CO₂ (bei einem Durchschnitt von 20-30 kg CO₂ pro Barrel Rohöl).
• Umweltauswirkungen: CO₂ ist ein Haupttreiber des Klimawandels und trägt zur globalen Erwärmung bei.
5. Verunreinigte Böden und Schlacke:
• Menge: Während des Betriebs kann es zu Leckagen und Verschüttungen kommen, die Böden verschmutzen. Die genaue Menge ist schwer zu quantifizieren und variiert stark nach Standort.
• Inhalt: Verschmutzte Böden enthalten Kohlenwasserstoffe, Schwermetalle und organische Verbindungen, die das Ökosystem langfristig schädigen können.
• Umweltauswirkungen: Diese Verunreinigungen können die lokale Fauna und Flora gefährden und sind nur schwer zu reinigen.
Zusammenfassung der Abfälle und Giftstoffe
• Abwasser: 90.000 bis 300.000 Liter, enthält Salze, Schwermetalle, Kohlenwasserstoffe.
• Bohrschlamm: 1.890 bis 2.835 Kilogramm, enthält Schwermetalle, Ölrückstände, Chemikalien.
• Begleitgase: Emissionen wie Methan, CO₂, Schwefeldioxid, Stickoxide.
• CO₂-Emissionen: 6.000 bis 9.000 Kilogramm.
• Verunreinigte Böden: Schwankend, abhängig von Standortbedingungen und Betriebspraktiken.
Diese Schadstoffe und Reststoffe stellen erhebliche Herausforderungen für den Umweltschutz dar und erfordern aufwändige Maßnahmen zur Abfallbehandlung und -entsorgung, um Umweltschäden zu minimieren.
Bei einer Laufleistung von 150.000 Kilometern und einem Benzinverbrauch von 12.000 Litern entsteht eine erhebliche Menge an CO₂ und weiteren Schadstoffen durch die Verbrennung des Kraftstoffs. Die Menge der Emissionen lässt sich wie folgt abschätzen:
1. CO₂-Emissionen
• Berechnung: Ein Liter Benzin produziert etwa 2,3 kg CO₂.
• Gesamtemissionen:
12.000 mal 2,3 = 27.600 CO₂
• CO₂ gesamt: 27.600 kg (oder 27,6 Tonnen).
2. Stickoxide (NOx)
• Durchschnittlich entstehen 1,2 bis 1,6 Gramm NOx pro Kilometer bei einem Benzinmotor.
• Gesamtemissionen:
150.000 mal 1,4 = 210.000 NOx oder 210 kg NOx
• NOx gesamt: 210 kg.
3. Kohlenmonoxid (CO)
• Benzinmotoren emittieren etwa 5 bis 20 Gramm CO pro Kilometer.
• Gesamtemissionen (angenommen 10 g CO/km):
150.000 mal 10 CO = 1.500.000 g CO = 1.500 kg CO}
• CO gesamt: 1.500 kg.
4. Kohlenwasserstoffe (HC)
• Emissionen: Im Durchschnitt etwa 0,5 bis 1,0 Gramm HC pro Kilometer.
• Gesamtemissionen:
150.000 mal 0,75 g HC/km= 112.500 g HC= 112,5 kg HC}
• HC gesamt: 112,5 kg.
Zusammenfassung der Gesamtemissionen über 150.000 km:
• CO₂: 27.600 kg (27,6 Tonnen)
• Stickoxide (NOx): 210 kg
• Kohlenmonoxid (CO): 1.500 kg
• Kohlenwasserstoffe (HC): 112,5 kg
Diese Emissionen umfassen nur die direkten Abgase des Fahrzeugs. Weitere Umweltbelastungen durch die Herstellung und den Transport des Benzins sowie durch Abrieb von Bremsen und Reifen sind darin nicht enthalten.
Vergleich von Umweltbelastungen zwischen Stromer und Verbrenner
Klarer Sieger ist hier der Vollstromer. Insbesondere, wenn man die Recyclingquote berücksichtigt.
——————
Unterschiede in der Garantie
Hersteller von Elektrofahrzeugen geben eine Garantie auf die Akkus, die mindestens sechs Jahre und 160000 km oder bis zu zehn Jahre und 200.000 km gilt.
Bei Verbrennerfahrzeuge ist mir kein Fahrzeug mit einer ähnlichen Garantie bekannt.
———
Thema Reichweite des Fahrzeuges.
Viele Mittelklassewagen schaffen heute schon mit einer Batterieladung etwa 300 km.
Der Audi Q8 55 e-tron hat eine Reichweite von 300 bis 400 km in der Praxis.
Dies dürfte im Durchschnitt auch ausreichend sein. Es gibt natürlich auch Kleinwagen, die nur 200 km Reichweite haben.
Prinzipiell wird jedoch die Reichweite in den nächsten Jahren bei den Mittelklassewagen erheblich auch zunehmen.
Wie viele Ladesäulen gibt es in Deutschland?
Jetzt könnte man natürlich sagen, dass es zu wenig Ladesäulen gibt. Das ist aber schon lange nicht mehr der Fall. Stand vom 1. September 2024 gab es in Deutschland insgesamt 145.857 öffentlich zugängliche Ladepunkte für Elektrofahrzeuge.
Und auch das Problem Wartezeit ist heute schon ein Problem der Vergangenheit.
Ich lade beispielsweise bei mir zu Hause an meiner eigenen Wollbox und muss nur noch auf längeren Reisen eine Ladung unterwegs vornehmen.
Insofern ist die Gesamtbeladezeit im Jahr viel geringer wie früher und ich muss nicht mehr an der Tankstelle zusätzliche Dinge zu teuren Preisen kaufen (Süßigkeiten und so weiter).